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Simulating Free Surface Flows with SPH
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The SPH (smoothed particle hydrodynamics) method is extended 1o
deal with free surface incompressible flows, The method is easy to use,
and examples will be given of its application to a breaking dam, a bore,
the simulation of a wave maker, and the propagation of waves towards
a beach. Arbitrary moving boundaries can be included by modelling the
boundaries by particles which repel the fluid particles. The method is
explicit, and the time steps are therefore much shorter than required by
other less flexible methods, but it is robust and easy to program.
© 1994 Academic Press, Inc.

1. INTRODUCTION

Free surface flows in hydrodynamics are of great
industrial and environmental importance but they are dif-
ficult to simulate because boundary conditions are required
on an arbitrarily moving surface. The MAC method [5],
which uses particles to define the surface and finite differen-
ces to solve the hydrodynamic equations, is the most flexible
and robust of the available numerical methods. It has been
applied to a wide variety of problems (for references see
{4]). including waterfalls, breaking dams, and two-fluid
instabilities, and it has been extended to deal with moving
boundaries [16] and simplified [6], but it remains
complicated to program,

In this paper we consider the application of the particle
method SPH (smoothed particle hydrodynamics) to free
surface problems. SPH is a Lagrangian particle method
which does not require a grid and can be used to simulate
a compressible fluid moving arbitrarily in three dimensions.
It is robust and simple to program. There have been
numerous applications in astrophysics ([ 8, 3]; for reviews
see [10,12,2]), where complex gas dynamics involving
supersonic velocities, radiation, nuclear reactions, and the
high speed collision of metals have been successfully treated.
However, it is not clear that the method can be extended to
the simulation of incompressible fluids, not is it clear that
boundaries can be incorporated easily. The purpose of this
paper is to show that such an extension is possible.

There are at least two ways that SPH might be extended
to incompressible or nearly incompressible flow. The first of
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these is to work directly with the constraint of constant den-
sity. It is possible to include these constraints easily in the
SPH formalism by using the Gibbs—Appell equations {15]
which are generalized versions of Gauss’ principle of least
constraint. Unfortunately, the resulting equations are
cumbersome, and it has not been possible to solve them
efficiently without further approximations.

The second approach, and the one we use here, is based
on the observation that real fluids such as water are
compressible, but with a speed of sound which is very
much greater than the speed of bulk flow. The momentum
equation shows that the variation in density dp is given by

I~

dp v

p ¢

+l

where L is a typical length scale of the flow, 7 is a typical
time scale, and v is a typical velocity. For the problems we
are considering, v= L/t, so that the relative fluctuation in
density is proportional to M ?, where M is the Mach num-
ber. For fluids like water, with sound speed ~ 10° ms ™%, the
Mach number is extremely small, and it is customary to
approximate the fluid by an artificial fluid which is exactly
incompressible. The approach here is different. The real
fluid is approximated by an artificial fluid which is more
compressible than the real fluid. The artificial fluid has a
speed of sound which is still much larger than the speed of
bulk flow and therefore has very small density fluctuations.

The standard SPH [ormulation of fluid dynamics can
then be taken over largely unchanged. The price paid is that,
if density fluctuations are to be ~ 1%, M must be ~10 and
the Courant condition then requires ~ 10 times as many
steps as in other methods, However, these other methods
often require several iterations for each step (MAC is an
example), and the disparity in work is thercfore not as great
as it might seem at first sight. To offset the many time steps
we also have the advantage of great ease of use. It is, for
example, easy to convert the programs to deal with more
materials and different boundaries.

Apart from showing how SPH may be used for free sur-
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face problems we show how boundaries may be modelled
very simply by using boundary particles which impose for-
ces on the fluid [17, 187. This idea is based on the fact that
real boundaries are produced by atoms or molecules which
exert forces on the fluid. The boundary condition that the
velocity normal to the boundary vanishes at the boundary
can therefore be replaced by a boundary force in the
momentum equation. The real boundary force has the short
range of atomic dimensions, but it can be approximated by
an artificial force with a range close to the resolution length
of the calculation. If a viscous boundary condition is
required we include the boundary particles in the
calculation of the viscous stress.

The boundary particles can be set up to follow any fixed
or moving boundary. As an example, the simulation of a
complete wave generator with the moving parts, fluid, and
the beach will be described. :

It is interesting, and possibly useful, that the SPH
formulation with boundary forces leads to a very simple
Hamiltonian formulation of fluid dynamics.

2. THE SPH EQUATIONS

The SPH equations for a compressible gas are described
in detail by Monaghan [12]. They are obtained from the
continuum equations of fluid dynamics by interpolating
from a set of points which may be disordered. The interpola-
tion is based on the theory of integral interpolants using
interpolation kernels which approximate a delta function.
The interpolants are analytic funcions which can be dif-
ferentiated without the use of grids. If the points are fixed in
position the equations are identical to finite difference equa-
tions with different forms depending on the interpolation
kernel.

The SPH cquations describe the motion of the inter-
polating points which can be thought of as particles. Each
particle carries a mass m, a velocity v, and other properties
depending on the problem.

The momentum equation for particle & becomes

dv, F, P
d“; ="Zmb(__2+—§+nab)VrJWab+Fas {21)
2] a b

where the summation is over all particles other than particle
a {although in practice only near neighbours contribute), P
is the pressure, and p is the density, 7, produces a shear
and buik viscosity, F, is a body force {for the problems con-
sidered here this is gravity), W, is the interpolating kernel,
and V, denotes the gradient of the kernel taken with respect
to the coordinates of partticle . The terms involving the
pressure are derived from the pressure gradient. They are
written in symmetrized form to conserve linear and angular
momentum when the kernel is symmetric.
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In this paper we use the spline based kernel {13, 127. The
kernel depends on a length 4 which determines the resolu-
tion (see (2.7)}. For separations > 24 the kernel vanishes so
that the summations only involve near neighbours. Typi-
cally # is > the initial particle separation. It is possible to
have a different resolution length for each particle, but this
should not be necessary for incompressible flow,

The viscous term [7 , has the general form

- 2
_acabuab-l_ﬁnu'ab_
= ’ Yoo Tap < 0
I, = Pab
b .
“ 0; Y T >0,
where
= AFR»
wh— 3, 2°
rab+ "

In these expressions the notation A, =A_,—A,, and
Au=(A,+ A,)/2 has been used, and ¢ is the speed of
sound. Because of its symmetry the viscous term conserves
linear and angular momentum. The viscosity vanishes for
rigid rotation. For the problems described here we take § as
zero. The term involving « introduces both shear and bulk
viscosity into incompressible flow. In the present case, with
negligible changes in the density, the viscosity is almost
entirely shear viscosity with a viscosity coeflicient
approximately afc. In most of the calculations we take
a=001. '

The normal practice in SPH calculations is to find the
smoothed density by summing over the particles according
to

P:Zmb Wy (2.2)
b

However, if (2.2) is used for fluids like water, where the den-
sity falls discontinuously to zero at the surface, the density
will be smoothed over the length 24 and surface particles
will have a low density. The equation of state will then intro-
duce incorrect pressures and degrade the calculation. It is
therefore preferable to depart from normal practice and
approximate the rate of change of the density. All particles
are then assigned the same initial density which only
changes when particles are in relative motion.

Writing the continuity equation in the form

d
Ff: =V.(pv)+v-Vp,

and using SPH particle interpoiants for the right-hand side,
the rate of change of the density of particle « becomes

dp,
dt

=Y (Vo=V} -V W, (2.3)
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There is also a computational advantage in using (2.3)
since all rates of change can be calculated in one pass over
the particles, whereas with (2.2}, there is one pass to
calculate the density, then another pass to calculate the rate
of change of velocity.

The thermal energy per unit mass changes according to

du,
1

d

|

P, P
_a+_g+nab) vab Vu Wab' (2‘4)

Py Ph
The rate of change of particle position is

dr,

Ma_ 2.5
o Yo (2.5)

but it proves important for the free surface problems to use
the XSPH variant which involves adding the following
correction to the right-hand side of (2.5),

M ¥, — ¥
Aa=ﬁz b(b a)

! W,
b p ab b

(2.6)

This correction to the velocity keeps the particles more
orderly and, in high speed flow, prevents the penetration of
one fluid by another [11].

In this paper we choose ¢=0.5. For consistency the
velocity used in the continuity equation should be the
velocity used for stepping the particles. This is not necessary
for retatively placid flows (such as the breaking dam), but it
was found necessary for the simulated wave maker. Note
that each particle has effectively two velocities. One of these,
v, comes from the momentum equation, while the other is
the corrected velocity used for moving the particles.

For the reader unfamiliar with the SPH equations they
may be interpreted conveniently using a gaussian kernel. In
two dimensions the gaussian kernel has the form

W =expl —(r,—1,)*/R*)/(zh?), (27
and the contribution of particle b to the acceleration of par-
ticle ¢ is easily seen to be a symmetric centra! force. From
this fact it follows that the method conserves linear and
angular momentum. In the same way it can be seen that the
density of particle & increases when particle b is moving
towards it.

3. THE EQUATION OF STATE

As remarked earlier, the density variation in fluid flow is
oc M?, where M is the Mach number. Batchelor [17 gives
an equation of state for water which describes sound waves
accurately. This equation of state, modified to give a smaller
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speed of sound, is suitable for the simulation of the bulk
flow of the fluid. The equation of state has the form

ren((2)-)

with y = 7. This equation of state is the first one that I tried
and no attempt has yet been made to fine-tune the method
by choosing a different equation of state. The choice of B
determines the speed of sound. For éxample, when a dam of
height H collapses, an approximate upper bound to the
speed v of the water is given by

(3.1)

vi=2gH (3.2)

and the coeflicient B in the equation of state should be taken
as

_ 200gH
Py

B

(3.3)

with a speed of sound ¢ approximately ./200gH and
M ~(.1. Numerical experiments confirm that the density
variations are consistent with this estimate. In a similar way
an equation of state can be set up for any flow problem.
Other examples will be given iater.

4. BOUNDARY CONDITIONS

Most of the calculations to be described here were made
with boundary particles which exert central forces on fluid
particles. The form for the force was guided by the known
forces between molecules. For a boundary and fluid particle
separated by a distance r the force per unit mass f{r) has the
Lennard-Jones form

Py P2

w-o( ()
r rjor
but is set to zero if r > r, so that the force is purely repulsive.
The constants p, and p, must satisfy the condition p, > p,
and for most of the simulations p, =4 and p, = 2. Similar
results were found with p, =12 and p,=6. There is some
evidence from numerical calculations that there might be an
advantage in allowing the force to attract at large distances,
or to go to zero smoothly, but these possibilities have not
been explored.

The length scale r, is taken to be the initial spacing
between the particles, and the coefficient D (with dimen-
sions v*) was chosen by considering the physical configura-
tion. For problems involving dams, bores; or weirs with
fluid of depth H, we take D = 5gH, where H is the depth of
the water, but D = 10gH or D = gH give similar results.

(4.1)



402

Peskin [17] constructed boundary forces by assuming
that there was a concentrated force at the boundary which
could be described by a delta function. This idea can be
implemented in different ways according to the way the
delta function is approximated. However, in the calcula-
tions described here, the use of forces based on known
molecular forces worked better than forces based on
approximations of the delta function,

Apart from preventing penetration and therefore
ensuring that the normal component of the velocity
vanishes, boundary particles may be required to correctly
produce no-slip conditions. Where this is required the
boundary particles are included in the calculation of the
viscous terms in the momentum equation.

5. IMPLEMENTATION

For the two-dimensional calculations described here the
particles can be set up initially on a cartesian lattice, or
preferably, on an hexagonal lattice. The mass of particle b is
given by m,=p, 44, where AA is the area per particle.
Particles that extend beyond boundaries are removed.
Some care needs to be exercised near sloping or curved
boundaries because some particles from the lattice may end
up very close to the boundary particles and experience a
huge boundary force. In such cases the initializing routine
should ensure that no fluid particle is too close to the
boundary particies.

The particles are assigned an initial density 10° kg/m?®
which in gravity flows may need to be adjusted to give the
correct hydrostatic pressure when the pressure is calculated
from the equation of state. For example, when the gravity
acts in the negative y direction, the density is given by

M___y)) U?’ (5.1)

= 1
£ P0(+ B

where H is the depth.

Even with adjustments to the density to ensure that the
initial state Is near equilibrium the system may still have
substantial unbalanced forces. To settie the system down to
an equilibrium state a damping term, — I'v, was introduced
into the momentum equations, and the damping was
contined until the kinetic energy was very low, after which
I'=0. The system was then activated by setting up the
perturbations or moving boundaries required 10 initiate the
motion to be studied.

The summations can be ¢valuated efficiently using link
lists to.access neighbouring particles [137]. The link list uses
a grid of bookkeeping cells with size 2. Only particles in
neighbouring cells can then contribute to the properties of
particles in a given cell.

1. J. MONAGHAN

Time stepping is carried out using 4 predicior—corrector
scheme. For an equation of the form

dv
—=—Iv+F
7 v+

(5.1)
the predictor step predicts to the midpoint so that, with time
step d¢, the midpoint v is

n+1/2=0”+0.56£1’" 59
v 1+ 0.5 51 5.2)

with corrector step

"+ 0.5 51 FrE 2
n+1/2 — ) 53
v 1+ 057 81 5:3)

In each step the damping term is treated implicitly. The
value of ¥ at the end of the step is then

Un+1 =2un+1,"2_vn. (54)
To speed up the calculations the predictor step uses the
value of F at the previous midpoint. The errors are still of
O(8+%). The time step is largely controlled by the Courant
condition, but we use the general SPH time step control [7]

which includes the effect of viscosity and body forces. The
value of I" 8¢ was typically 0.05.

6. THE EVOLUTION OF AN ELLIPTICAL DROP

A simple test of the SPH formulation is the flow of an
elliptical drop in two dimensions when the initial velocity
field is linear in the coordinates. The condition that the drop
remains elliptical with time varying axes g and b is that

_xda

_raa , 6.1
P adt (6.1)

¥

2| &

Loy
b

where, for example, v, 1s the x component of velocity. The
condition that the fluid remains incompressible is that ab is
constant which also follows from the vanishing of V . v.

TABLE I

SPH and Theoretical (Based on (6.2}, (6.3)) Values of &
{Semi-Major Axis) of the Elliptical Drop

Time/s Theory SPH
0.0008 1.083 1.086
0.0038 1.44 1.44
0.0076 1.95 191
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FIG. 1. Particle positions for the evolution of an elliptical drop as it
evolves from a circle to a narrow ellipse. The initial speed is 141 m/s and
the two frames are at 0.0008 s and 0.0082 s.

From the momentum equation and the condition that the
pressure is constant on the elliptical surface, we deduce that

dA_ Aa— o)
attrwt

= (6.2)

where A is defined by

da;

T —ad, (6.3)

and w is the initial value of ab.

These equations can be solved to high accuracy and the
results compared with the SPH simulation. The initial
velocity field was (—100x, 100y) and the initial fluid
configuration was a circle of radius 1 m. The pressure was
computed using a coefficient that gave the normal pressure
for water and a sound speed of 1400 m/s. In this case, as
expected, the density fluctuations were < 1%. In Fig. 1 we
show two fluid particle configurations from a simulation
using 1884 particles. It is apparent that the particle
configuration preserves a smooth outer boundary with
no tendency to break up or become ragged. In Tablel
the run of the semi-major axis is shown. The errors in the
calculation are <2%.

7. BURSTING DAM

The simplified bursting dam has been simulated using
MAC [5,14] and the results arc compared with the
experiments of Martin and Noyce [9]. In the SPH calcula-
tion the boundary was simulated with the Lennard-Jones
boundary force, 2910 particles were used for the simulation,
and o = 0.01. In this simulation boundary particles form the
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left-hand boundary, the base, and a small triangular
obstacle.

In Fig. 2 the particle configurations for the collapsing
dam are shown at representative times. The particles main-
tain an orderly configuration until they meet the obstacle
when they simulate a splash. The appearance before the
fluid meets the obstacle is very similar to the MAC
simulations,

In Table I we compare the SPH results with the
experimental results of Martin and Moyce [9]. The surge
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FIG, 2. The positions of 2910 water particles in the evolution of a
column of fluid under gravity. Boundary particles form the boundary to the
left, the base, and the triangular obstacle. The Lennard-Jones boundary
force was used. Other details are given in the text.
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TABLE I1

Experimental and SPH Values of the Surge Front Z and
Height H of a Fluid Column Collapsing under Gravity

Time H (exp) H (SPH) Z (exp) Z {SPH)
0.71 0.90 0.90 1.33 [.56
1.39 0.76 0.75 2.25 2.50
210 0.57 0.56 322 375
320 0.32 0.37 430 5.00

Nore.  Units and further details are in the text.

front Z and height of the dam H are in units of H,; the
initial height of the dam (this is the case n =1 of Martin and
Noyce), and the time is in units of ./ H,/g. Because the
timing in the experiment has an error of ~Q.1 the com-
parison of the results is only approximate. With this proviso
the agreement is satisfactory., Note that the SPH values
of Z exceed those of the experiment and suggest that the
experimental results are affected by drag between the fluid
and the bottom.

Close examination of Fig. 2 shows that the boundary
does affect the particle configuration, but only within a dis-
tance of ~# of the boundary. For example, the first frame
indicates that at the top left-hand corner of the fluid the
boundary force has kept the fluid further away than at the
base. This is because the hydrostatic pressure is smaller near
the top than at the bottom. The error is, however, always
~ h which is acceptable and equivalent to a slight perturba-
tion to the wall. There is also an indication that the motion
of particles moving near the horizontal boundary is
perturbed by the particle barrier. When the Lennard-Jones
boundary force was replaced by the gaussian force similar
boundary effects were noted, but a careful study of the
effects of different boundary forces has not been completed.

8. BORE

In Fig. 3 we show the formation of a bore. The fluid on
the right is moving to the left with an initial velocity of
8.6 m/s and depth 10 m. Particles form the bottom and the
feft-hand wall. Several experiments were run with different
initial conditions and different viscosities. If all the fluid is
initially moving to the left, there is a surge up the wall and
a splash which complicates the inteérpretation. It was found
preferable to start with some fluid near the left boundary at
rest and at height 20 m. The bore then rapidly settled to its
steady value after forming a breaking crest (see the first
frame). No special conditions were applied at the right-hand
end of the fluid which collapses like the dam described
previously,

For the calculation shown here the viscosity coefficient «
was set at 0.1. Smaller values of « result in a turbulent bore,
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FIG. 3. Particle positions for a viscous bore with fluid travelling from
the right to left at 8.5 m/s. The moving fluid meets static fluid with initial
depth 20 m. Boundary particles form the base and the barrier to the left.
Other details are given in the text.

as expected from both theory and experiment. The theoreti-
cal bore speed is 8.6 m/s and the theoretical height of the
bore is 20 m. The simulation gives a bore speed of 8.5 m/s
with an average height close to 20 m. The density fluctua-
tions were <1%.

9. WAVE MAKER

This simulation involves a wave maker in the form of an
oscillating piston on the left-hand side, a straight-line beach
with a slope of 0.1, and a horizontal section 10m long
between the wavemaker and the beach. The SPH simuiation
used 4552 particles.

The frequency of the oscillation was 1.45 . /g/H, where g
is the gravitational acceleration, £ is the depth of the water
at the wave maker (5m in this simulation), and the
amplitude of the wavemaker (the stroke) was 2.5m. For
these parameters the deep water wavelength is 149 m.
Waves with these parameters are expected to spill and
produce white water at the crest rather than plunge (U.S.
Army Shore Protection Manual, Vol. 1), although it is clear
that there are no exact criteria for determining what the
waves will do.

In Fig. 4 the waves are shown propagating onto the
beach. The wavelength is close to the deep water value of
14.9 m, but near the wavemaker the profile of the wave is
complicated and only begins to simplify at distances » a
wavelength [19], but in the simulation this occurs when the
effect of the sloping beach begins to be important. The
formation of spilling waves is clear, but as the waves evolve
they surge.
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FIG. 4. Particle configurations for the wavemaker. A piston oscillates
on the left-hand side. Particles form the bottom boundary and the piston.
Details are given in the text. '

In Fig. 5 the velocity vectors of the particles for some
interesting sections of the waves are shown. Some waves
show breaking at the crest, and there is an indication that,
with more particles to provide resolution, the crests might
plunge. Note that, as in the case of the dam, the particle
configuration at the base shows a structure which may be
due to discreteness of the boundary. The structure lies
within ~ h of the boundary and it takes the form of particles
keeping a constant density while decreasing their separation
parallel to the boundary and increasing their separation
perpendicular to the boundary.
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FIG. 5. Velocily veciors for fluid particles in the last two frames in
Fig. 4. Note how the fluid particles move with the piston and note the
breaking of the crests.

10. DISCUSSION AND CONCLUSIONS

The results of the computations show that SPH can be
used to simulate free surface flows without difficulty,
provided the density is calculated by approximating its rate
of change and the particles are moved with a corrected
velocity. The boundary particles give a satisfactory
representation of boundaries, but there is evidence from the
simulations that the fluid particles note the discreteness of
the boundary. 1t would clearly be useful to optimize the
form of the boundary forces because of the great advantages
they offer,

The limitation of the use of an artificial equation of state
is that the time step is shorter than desirable. Within the
present formulation this constraint can only be broken by
the development of an implicit scheme. Meanwhile, as
emphasized in the Introduction, it remains an advantage of
SPH that it provides a simple and reasonably accurate
technique for complex problems.
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