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Foreword

Recent activities of major chip manufacturers such as NVIDIA make it more 
evident than ever that future designs of microprocessors and large HPC 
systems will be hybrid/heterogeneous in nature. These heterogeneous systems 
will rely on the integration of two major types of components in varying 
proportions:

multi- and many-core CPU technology•	 : The number of cores will continue to 
escalate because of the desire to pack more and more components on a chip 
while avoiding the power wall, the instruction-level parallelism wall, and the 
memory wall.

Special-purpose hardware and massively parallel accelerators•	 : For example, 
GPUs from NVIDIA have outpaced standard CPUs in floating-point performance 
in recent years. Furthermore, they have arguably become as easy, if not easier, 
to program than multicore CPUs.

The relative balance between these component types in future designs is not 
clear and will likely vary over time. There seems to be no doubt that future 
generations of computer systems, ranging from laptops to supercomputers,  
will consist of a composition of heterogeneous components. Indeed, the petaflop 
(1015 floating-point operations per second) performance barrier was breached by 
such a system.

And yet the problems and the challenges for developers in the new computational 
landscape of hybrid processors remain daunting. Critical parts of the software 
infrastructure are already having a very difficult time keeping up with the pace 
of change. In some cases, performance cannot scale with the number of cores 
because an increasingly large portion of time is spent on data movement rather 
than arithmetic. In other cases, software tuned for performance is delivered years 
after the hardware arrives and so is obsolete on delivery. And in some cases, as 
on some recent GPUs, software will not run at all because programming environ-
ments have changed too much.
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FOREWORD

CUDA by Example addresses the heart of the software development challenge by 
leveraging one of the most innovative and powerful solutions to the problem of 
programming the massively parallel accelerators in recent years.

This book introduces you to programming in CUDA C by providing examples and 
insight into the process of constructing and effectively using NVIDIA GPUs. It 
presents introductory concepts of parallel computing from simple examples to 
debugging (both logical and performance), as well as covers advanced topics and 
issues related to using and building many applications. Throughout the book, 
programming examples reinforce the concepts that have been presented.

The book is required reading for anyone working with accelerator-based 
computing systems. It explores parallel computing in depth and provides an 
approach to many problems that may be encountered. It is especially useful for 
application developers, numerical library writers, and students and teachers of 
parallel computing.

I have enjoyed and learned from this book, and I feel confident that you will 
as well.

Jack Dongarra 
University Distinguished Professor, University of Tennessee Distinguished Research 
Staff Member, Oak Ridge National Laboratory 
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Preface

This book shows how, by harnessing the power of your computer’s graphics 
process unit (GPU), you can write high-performance software for a wide range 
of applications. Although originally designed to render computer graphics on 
a monitor (and still used for this purpose), GPUs are increasingly being called 
upon for equally demanding programs in science, engineering, and finance, 
among other domains. We refer collectively to GPU programs that address 
problems in nongraphics domains as general-purpose. Happily, although you 
need to have some experience working in C or C++ to benefit from this book, 
you need not have any knowledge of computer graphics. None whatsoever! GPU 
programming simply offers you an opportunity to build—and to build mightily—
on your existing programming skills.

To program NVIDIA GPUs to perform general-purpose computing tasks, you 
will want to know what CUDA is. NVIDIA GPUs are built on what’s known as 
the CUDA Architecture. You can think of the CUDA Architecture as the scheme 
by which NVIDIA has built GPUs that can perform both traditional graphics-
rendering tasks and general-purpose tasks. To program CUDA GPUs, we will 
be using a language known as CUDA C. As you will see very early in this book, 
CUDA C is essentially C with a handful of extensions to allow programming of 
massively parallel machines like NVIDIA GPUs.

We’ve geared CUDA by Example toward experienced C or C++ programmers 
who have enough familiarity with C such that they are comfortable reading and 
writing code in C. This book builds on your experience with C and intends to serve 
as an example-driven, “quick-start” guide to using NVIDIA’s CUDA C program-
ming language. By no means do you need to have done large-scale software 
architecture, to have written a C compiler or an operating system kernel, or to 
know all the ins and outs of the ANSI C standards. However, we do not spend 
time reviewing C syntax or common C library routines such as malloc() or 
memcpy(), so we will assume that you are already reasonably familiar with these 
topics. 
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PREFACE

You will encounter some techniques that can be considered general parallel 
programming paradigms, although this book does not aim to teach general 
parallel programming techniques. Also, while we will look at nearly every part of 
the CUDA API, this book does not serve as an extensive API reference nor will it 
go into gory detail about every tool that you can use to help develop your CUDA C 
software. Consequently, we highly recommend that this book be used in conjunc-
tion with NVIDIA’s freely available documentation, in particular the NVIDIA CUDA 
Programming Guide and the NVIDIA CUDA Best Practices Guide. But don’t stress 
out about collecting all these documents because we’ll walk you through every-
thing you need to do.

Without further ado, the world of programming NVIDIA GPUs with CUDA C awaits!
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It’s been said that it takes a village to write a technical book, and CUDA by Example 
is no exception to this adage. The authors owe debts of gratitude to many people, 
some of whom we would like to thank here. 

Ian Buck, NVIDIA’s senior director of GPU computing software, has been immea-
surably helpful in every stage of the development of this book, from championing 
the idea to managing many of the details. We also owe Tim Murray, our always-
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Chapter 1

Why CUDA? Why Now?

There was a time in the not-so-distant past when parallel computing was looked 
upon as an “exotic” pursuit and typically got compartmentalized as a specialty 
within the field of computer science. This perception has changed in profound 
ways in recent years. The computing world has shifted to the point where, far 
from being an esoteric pursuit, nearly every aspiring programmer needs training 
in parallel programming to be fully effective in computer science. Perhaps you’ve 
picked this book up unconvinced about the importance of parallel programming 
in the computing world today and the increasingly large role it will play in the 
years to come. This introductory chapter will examine recent trends in the hard-
ware that does the heavy lifting for the software that we as programmers write. 
In doing so, we hope to convince you that the parallel computing revolution has 
already happened and that, by learning CUDA C, you’ll be well positioned to write 
high-performance applications for heterogeneous platforms that contain both 
central and graphics processing units.



WHY CUDA? WHY NOW?

2

Chapter Objectives1.1 
Through the course of this chapter, you will accomplish the following:

You will learn about the increasingly important role of parallel computing.• 

You will learn a brief history of GPU computing and CUDA.• 

You will learn about some successful applications that use CUDA C.• 

The Age of Parallel Processing1.2 
In recent years, much has been made of the computing industry’s widespread 
shift to parallel computing. Nearly all consumer computers in the year 2010 
will ship with multicore central processors. From the introduction of dual-core, 
low-end netbook machines to 8- and 16-core workstation computers, no longer 
will parallel computing be relegated to exotic supercomputers or mainframes. 
Moreover, electronic devices such as mobile phones and portable music players 
have begun to incorporate parallel computing capabilities in an effort to provide 
functionality well beyond those of their predecessors. 

More and more, software developers will need to cope with a variety of parallel 
computing platforms and technologies in order to provide novel and rich experi-
ences for an increasingly sophisticated base of users. Command prompts are out; 
multithreaded graphical interfaces are in. Cellular phones that only make calls 
are out; phones that can simultaneously play music, browse the Web, and provide 
GPS services are in. 

centrAl ProcessInG unIts1.2.1 

For 30 years, one of the important methods for the improving the performance 
of consumer computing devices has been to increase the speed at which the 
processor’s clock operated. Starting with the first personal computers of the early 
1980s, consumer central processing units (CPUs) ran with internal clocks oper-
ating around 1MHz. About 30 years later, most desktop processors have clock 
speeds between 1GHz and 4GHz, nearly 1,000 times faster than the clock on the 
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original personal computer. Although increasing the CPU clock speed is certainly 
not the only method by which computing performance has been improved, it has 
always been a reliable source for improved performance.

In recent years, however, manufacturers have been forced to look for alterna-
tives to this traditional source of increased computational power. Because of 
various fundamental limitations in the fabrication of integrated circuits, it is no 
longer feasible to rely on upward-spiraling processor clock speeds as a means 
for extracting additional power from existing architectures. Because of power and 
heat restrictions as well as a rapidly approaching physical limit to transistor size, 
researchers and manufacturers have begun to look elsewhere.

Outside the world of consumer computing, supercomputers have for decades 
extracted massive performance gains in similar ways. The performance of a 
processor used in a supercomputer has climbed astronomically, similar to the 
improvements in the personal computer CPU. However, in addition to dramatic 
improvements in the performance of a single processor, supercomputer manu-
facturers have also extracted massive leaps in performance by steadily increasing 
the number of processors. It is not uncommon for the fastest supercomputers to 
have tens or hundreds of thousands of processor cores working in tandem.

In the search for additional processing power for personal computers, the 
improvement in supercomputers raises a very good question: Rather than solely 
looking to increase the performance of a single processing core, why not put 
more than one in a personal computer? In this way, personal computers could 
continue to improve in performance without the need for continuing increases in 
processor clock speed.

In 2005, faced with an increasingly competitive marketplace and few alternatives, 
leading CPU manufacturers began offering processors with two computing cores 
instead of one. Over the following years, they followed this development with the 
release of three-, four-, six-, and eight-core central processor units. Sometimes 
referred to as the multicore revolution, this trend has marked a huge shift in the 
evolution of the consumer computing market.

Today, it is relatively challenging to purchase a desktop computer with a CPU 
containing but a single computing core. Even low-end, low-power central proces-
sors ship with two or more cores per die. Leading CPU manufacturers have 
already announced plans for 12- and 16-core CPUs, further confirming that 
parallel computing has arrived for good.
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The Rise of GPU Computing1.3 
In comparison to the central processor’s traditional data processing pipeline, 
performing general-purpose computations on a graphics processing unit (GPU) is 
a new concept. In fact, the GPU itself is relatively new compared to the computing 
field at large. However, the idea of computing on graphics processors is not as 
new as you might believe.

A BRIEF HISTORY OF GPUS1.3.1 

We have already looked at how central processors evolved in both clock speeds 
and core count. In the meantime, the state of graphics processing underwent a 
dramatic revolution. In the late 1980s and early 1990s, the growth in popularity of 
graphically driven operating systems such as Microsoft Windows helped create 
a market for a new type of processor. In the early 1990s, users began purchasing 
2D display accelerators for their personal computers. These display accelerators 
offered hardware-assisted bitmap operations to assist in the display and usability 
of graphical operating systems.

Around the same time, in the world of professional computing, a company by  
the name of Silicon Graphics spent the 1980s popularizing the use of three-
dimensional graphics in a variety of markets, including government and defense 
applications and scientific and technical visualization, as well as providing the 
tools to create stunning cinematic effects. In 1992, Silicon Graphics opened the 
programming interface to its hardware by releasing the OpenGL library. Silicon 
Graphics intended OpenGL to be used as a standardized, platform-independent 
method for writing 3D graphics applications. As with parallel processing and 
CPUs, it would only be a matter of time before the technologies found their way 
into consumer applications.

By the mid-1990s, the demand for consumer applications employing 3D graphics 
had escalated rapidly, setting the stage for two fairly significant developments. 
First, the release of immersive, first-person games such as Doom, Duke Nukem 
3D, and Quake helped ignite a quest to create progressively more realistic 3D envi-
ronments for PC gaming. Although 3D graphics would eventually work their way 
into nearly all computer games, the popularity of the nascent first-person shooter 
genre would significantly accelerate the adoption of 3D graphics in consumer 
computing. At the same time, companies such as NVIDIA, ATI Technologies, 
and 3dfx Interactive began releasing graphics accelerators that were  affordable 
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enough to attract widespread attention. These developments cemented 3D 
graphics as a technology that would figure prominently for years to come.

The release of NVIDIA’s GeForce 256 further pushed the capabilities of consumer 
graphics hardware. For the first time, transform and lighting computations could 
be performed directly on the graphics processor, thereby enhancing the potential 
for even more visually interesting applications. Since transform and lighting were 
already integral parts of the OpenGL graphics pipeline, the GeForce 256 marked 
the beginning of a natural progression where increasingly more of the graphics 
pipeline would be implemented directly on the graphics processor. 

From a parallel-computing standpoint, NVIDIA’s release of the GeForce 3 series 
in 2001 represents arguably the most important breakthrough in GPU technology. 
The GeForce 3 series was the computing industry’s first chip to implement 
Microsoft’s then-new DirectX 8.0 standard. This standard required that compliant 
hardware contain both programmable vertex and programmable pixel shading 
stages. For the first time, developers had some control over the exact computa-
tions that would be performed on their GPUs. 

eArly GPu comPutInG1.3.2 

The release of GPUs that possessed programmable pipelines attracted many 
researchers to the possibility of using graphics hardware for more than simply 
OpenGL- or DirectX-based rendering. The general approach in the early days of 
GPU computing was extraordinarily convoluted. Because standard graphics APIs 
such as OpenGL and DirectX were still the only way to interact with a GPU, any 
attempt to perform arbitrary computations on a GPU would still be subject to the 
constraints of programming within a graphics API. Because of this, researchers 
explored general-purpose computation through graphics APIs by trying to make 
their problems appear to the GPU to be traditional rendering. 

Essentially, the GPUs of the early 2000s were designed to produce a color for 
every pixel on the screen using programmable arithmetic units known as pixel 
shaders. In general, a pixel shader uses its (x,y) position on the screen as well 
as some additional information to combine various inputs in computing a final 
color. The additional information could be input colors, texture coordinates, or 
other attributes that would be passed to the shader when it ran. But because 
the arithmetic being performed on the input colors and textures was completely 
controlled by the programmer, researchers observed that these input “colors” 
could actually be any data. 



WHY CUDA? WHY NOW?

6

So if the inputs were actually numerical data signifying something other than 
color, programmers could then program the pixel shaders to perform arbitrary 
computations on this data. The results would be handed back to the GPU as the 
final pixel “color,” although the colors would simply be the result of whatever 
computations the programmer had instructed the GPU to perform on their inputs. 
This data could be read back by the researchers, and the GPU would never be the 
wiser. In essence, the GPU was being tricked into performing nonrendering tasks 
by making those tasks appear as if they were a standard rendering. This trickery 
was very clever but also very convoluted.

Because of the high arithmetic throughput of GPUs, initial results from these 
experiments promised a bright future for GPU computing. However, the program-
ming model was still far too restrictive for any critical mass of developers to 
form. There were tight resource constraints, since programs could receive input 
data only from a handful of input colors and a handful of texture units. There 
were serious limitations on how and where the programmer could write results 
to memory, so algorithms requiring the ability to write to arbitrary locations in 
memory (scatter) could not run on a GPU. Moreover, it was nearly impossible to 
predict how your particular GPU would deal with floating-point data, if it handled 
floating-point data at all, so most scientific computations would be unable to 
use a GPU. Finally, when the program inevitably computed the incorrect results, 
failed to terminate, or simply hung the machine, there existed no reasonably good 
method to debug any code that was being executed on the GPU. 

As if the limitations weren’t severe enough, anyone who still wanted to use a GPU 
to perform general-purpose computations would need to learn OpenGL or DirectX 
since these remained the only means by which one could interact with a GPU. Not 
only did this mean storing data in graphics textures and executing computations 
by calling OpenGL or DirectX functions, but it meant writing the computations 
themselves in special graphics-only programming languages known as shading 
languages. Asking researchers to both cope with severe resource and program-
ming restrictions as well as to learn computer graphics and shading languages 
before attempting to harness the computing power of their GPU proved too large 
a hurdle for wide acceptance.

cudA1.4 
It would not be until five years after the release of the GeForce 3 series that GPU 
computing would be ready for prime time. In November 2006, NVIDIA unveiled the 
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industry’s first DirectX 10 GPU, the GeForce 8800 GTX. The GeForce 8800 GTX was 
also the first GPU to be built with NVIDIA’s CUDA Architecture. This architecture 
included several new components designed strictly for GPU computing and aimed 
to alleviate many of the limitations that prevented previous graphics processors 
from being legitimately useful for general-purpose computation.

WHAT IS THE CUDA ARCHITECTURE?1.4.1 

Unlike previous generations that partitioned computing resources into vertex 
and pixel shaders, the CUDA Architecture included a unified shader pipeline, 
allowing each and every arithmetic logic unit (ALU) on the chip to be marshaled 
by a program intending to perform general-purpose computations. Because 
NVIDIA intended this new family of graphics processors to be used for general-
purpose computing, these ALUs were built to comply with IEEE requirements for 
single-precision floating-point arithmetic and were designed to use an instruc-
tion set tailored for general computation rather than specifically for graphics. 
Furthermore, the execution units on the GPU were allowed arbitrary read and 
write access to memory as well as access to a software-managed cache known 
as shared memory. All of these features of the CUDA Architecture were added in 
order to create a GPU that would excel at computation in addition to performing 
well at traditional graphics tasks.

USING THE CUDA ARCHITECTURE1.4.2 

The effort by NVIDIA to provide consumers with a product for both computa-
tion and graphics could not stop at producing hardware incorporating the CUDA 
Architecture, though. Regardless of how many features NVIDIA added to its chips 
to facilitate computing, there continued to be no way to access these features 
without using OpenGL or DirectX. Not only would this have required users to 
continue to disguise their computations as graphics problems, but they would 
have needed to continue writing their computations in a graphics-oriented 
shading language such as OpenGL’s GLSL or Microsoft’s HLSL.

To reach the maximum number of developers possible, NVIDIA took industry-
standard C and added a relatively small number of keywords in order to harness 
some of the special features of the CUDA Architecture. A few months after 
the launch of the GeForce 8800 GTX, NVIDIA made public a compiler for this 
language, CUDA C. And with that, CUDA C became the first language specifically 
designed by a GPU company to facilitate general-purpose computing on GPUs.
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In addition to creating a language to write code for the GPU, NVIDIA also provides 
a specialized hardware driver to exploit the CUDA Architecture’s massive compu-
tational power. Users are no longer required to have any knowledge of the 
OpenGL or DirectX graphics programming interfaces, nor are they required to 
force their problem to look like a computer graphics task.

Applications of CUDA1.5 
Since its debut in early 2007, a variety of industries and applications have enjoyed 
a great deal of success by choosing to build applications in CUDA C. These 
benefits often include orders-of-magnitude performance improvement over the 
previous state-of-the-art implementations. Furthermore, applications running on 
NVIDIA graphics processors enjoy superior performance per dollar and perfor-
mance per watt than implementations built exclusively on traditional central 
processing technologies. The following represent just a few of the ways in which 
people have put CUDA C and the CUDA Architecture into successful use.

medIcAl ImAGInG1.5.1 

The number of people who have been affected by the tragedy of breast cancer has 
dramatically risen over the course of the past 20 years. Thanks in a large part to 
the tireless efforts of many, awareness and research into preventing and curing 
this terrible disease has similarly risen in recent years. Ultimately, every case of 
breast cancer should be caught early enough to prevent the ravaging side effects 
of radiation and chemotherapy, the permanent reminders left by surgery, and 
the deadly consequences in cases that fail to respond to treatment. As a result, 
researchers share a strong desire to find fast, accurate, and minimally invasive 
ways to identify the early signs of breast cancer.

The mammogram, one of the current best techniques for the early detection of 
breast cancer, has several significant limitations. Two or more images need to be 
taken, and the film needs to be developed and read by a skilled doctor to identify 
potential tumors. Additionally, this X-ray procedure carries with it all the risks of 
repeatedly radiating a patient’s chest. After careful study, doctors often require 
further, more specific imaging—and even biopsy—in an attempt to eliminate the 
possibility of cancer. These false positives incur expensive follow-up work and 
cause undue stress to the patient until final conclusions can be drawn. 
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Ultrasound imaging is safer than X-ray imaging, so doctors often use it in conjunc-
tion with mammography to assist in breast cancer care and diagnosis. But conven-
tional breast ultrasound has its limitations as well. As a result, TechniScan Medical 
Systems was born. TechniScan has developed a promising, three- dimensional, 
ultrasound imaging method, but its solution had not been put into practice for a 
very simple reason: computation limitations. Simply put, converting the gathered 
ultrasound data into the three-dimensional imagery required computation consid-
ered prohibitively time-consuming and expensive for practical use.

The introduction of NVIDIA’s first GPU based on the CUDA Architecture along with 
its CUDA C programming language provided a platform on which TechniScan 
could convert the dreams of its founders into reality. As the name indicates, its 
Svara ultrasound imaging system uses ultrasonic waves to image the patient’s 
chest. The TechniScan Svara system relies on two NVIDIA Tesla C1060 processors 
in order to process the 35GB of data generated by a 15-minute scan. Thanks to 
the computational horsepower of the Tesla C1060, within 20 minutes the doctor 
can manipulate a highly detailed, three-dimensional image of the woman’s breast. 
TechniScan expects wide deployment of its Svara system starting in 2010. 

COMPUTATIONAL FLUID DYNAMICS1.5.2 

For many years, the design of highly efficient rotors and blades remained a 
black art of sorts. The astonishingly complex movement of air and fluids around 
these devices cannot be effectively modeled by simple formulations, so accu-
rate simulations prove far too computationally expensive to be realistic. Only the 
largest supercomputers in the world could hope to offer computational resources 
on par with the sophisticated numerical models required to develop and validate 
designs. Since few have access to such machines, innovation in the design of 
such machines continued to stagnate.

The University of Cambridge, in a great tradition started by Charles Babbage, is 
home to active research into advanced parallel computing. Dr. Graham Pullan 
and Dr. Tobias Brandvik of the “many-core group” correctly identified the poten-
tial in NVIDIA’s CUDA Architecture to accelerate computational fluid dynamics 
unprecedented levels. Their initial investigations indicated that acceptable levels 
of performance could be delivered by GPU-powered, personal workstations. 
Later, the use of a small GPU cluster easily outperformed their much more costly 
supercomputers and further confirmed their suspicions that the capabilities of 
NVIDIA’s GPU matched extremely well with the problems they wanted to solve. 
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For the researchers at Cambridge, the massive performance gains offered by 
CUDA C represent more than a simple, incremental boost to their supercom-
puting resources. The availability of copious amounts of low-cost GPU computa-
tion empowered the Cambridge researchers to perform rapid experimentation. 
Receiving experimental results within seconds streamlined the feedback process 
on which researchers rely in order to arrive at breakthroughs. As a result, the 
use of GPU clusters has fundamentally transformed the way they approach their 
research. Nearly interactive simulation has unleashed new opportunities for 
innovation and creativity in a previously stifled field of research.

envIronmentAl scIence1.5.3 

The increasing need for environmentally sound consumer goods has arisen as 
a natural consequence of the rapidly escalating industrialization of the global 
economy. Growing concerns over climate change, the spiraling prices of fuel, 
and the growing level of pollutants in our air and water have brought into sharp 
relief the collateral damage of such successful advances in industrial output. 
Detergents and cleaning agents have long been some of the most necessary 
yet potentially calamitous consumer products in regular use. As a result, many 
scientists have begun exploring methods for reducing the environmental impact 
of such detergents without reducing their efficacy. Gaining something for nothing 
can be a tricky proposition, however. 

The key components to cleaning agents are known as surfactants. Surfactant 
molecules determine the cleaning capacity and texture of detergents and sham-
poos, but they are often implicated as the most environmentally devastating 
component of cleaning products. These molecules attach themselves to dirt and 
then mix with water such that the surfactants can be rinsed away along with the 
dirt. Traditionally, measuring the cleaning value of a new surfactant would require 
extensive laboratory testing involving numerous combinations of materials and 
impurities to be cleaned. This process, not surprisingly, can be very slow and 
expensive. 

Temple University has been working with industry leader Procter & Gamble to 
use molecular simulation of surfactant interactions with dirt, water, and other 
materials. The introduction of computer simulations serves not just to accelerate 
a traditional lab approach, but it extends the breadth of testing to numerous vari-
ants of environmental conditions, far more than could be practically tested in the 
past. Temple researchers used the GPU-accelerated Highly Optimized Object-
oriented Many-particle Dynamics (HOOMD) simulation software written by the 
Department of Energy’s Ames Laboratory. By splitting their simulation across two 
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NVIDIA Tesla GPUs, they were able achieve equivalent performance to the 128 
CPU cores of the Cray XT3 and to the 1024 CPUs of an IBM BlueGene/L machine. 
By increasing the number of Tesla GPUs in their solution, they are already simu-
lating surfactant interactions at 16 times the performance of previous platforms. 
Since NVIDIA’s CUDA has reduced the time to complete such comprehensive 
simulations from several weeks to a few hours, the years to come should offer 
a dramatic rise in products that have both increased effectiveness and reduced 
environmental impact. 

Chapter Review1.6 
The computing industry is at the precipice of a parallel computing revolution, 
and NVIDIA’s CUDA C has thus far been one of the most successful languages 
ever designed for parallel computing. Throughout the course of this book, we will 
help you learn how to write your own code in CUDA C. We will help you learn the 
special extensions to C and the application programming interfaces that NVIDIA 
has created in service of GPU computing. You are not expected to know OpenGL 
or DirectX, nor are you expected to have any background in computer graphics. 

We will not be covering the basics of programming in C, so we do not recommend 
this book to people completely new to computer programming. Some famil-
iarity with parallel programming might help, although we do not expect you to 
have done any parallel programming. Any terms or concepts related to parallel 
programming that you will need to understand will be explained in the text. In 
fact, there may be some occasions when you find that knowledge of traditional 
parallel programming will cause you to make assumptions about GPU computing 
that prove untrue. So in reality, a moderate amount of experience with C or C++ 
programming is the only prerequisite to making it through this book.

In the next chapter, we will help you set up your machine for GPU computing, 
ensuring that you have both the hardware and the software components neces-
sary get started. After that, you’ll be ready to get your hands dirty with CUDA C. If 
you already have some experience with CUDA C or you’re sure that your system 
has been properly set up to do development in CUDA C, you can skip to Chapter 3.
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Chapter 2

Getting Started

We hope that Chapter 1 has gotten you excited to get started learning CUDA C. 
Since this book intends to teach you the language through a series of coding 
examples, you’ll need a functioning development environment. Sure, you could 
stand on the sideline and watch, but we think you’ll have more fun and stay 
interested longer if you jump in and get some practical experience hacking 
CUDA C code as soon as possible. In this vein, this chapter will walk you 
through some of the hardware and software components you’ll need in order to 
get started. The good news is that you can obtain all of the software you’ll need 
for free, leaving you more money for whatever tickles your fancy.
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Chapter Objectives2.1 
Through the course of this chapter, you will accomplish the following:

You will download all the software components required through this book.• 

You will set up an environment in which you can build code written in CUDA C.• 

Development Environment2.2 
Before embarking on this journey, you will need to set up an environment in which 
you can develop using CUDA C. The prerequisites to developing code in CUDA C 
are as follows:

A CUDA-enabled graphics processor• 

An NVIDIA device driver• 

A CUDA development toolkit• 

A standard C compiler• 

To make this chapter as painless as possible, we’ll walk through each of these 
prerequisites now.

CUDA-ENABLED GRAPHICS PROCESSORS2.2.1 

Fortunately, it should be easy to find yourself a graphics processor that has 
been built on the CUDA Architecture because every NVIDIA GPU since the 2006 
release of the GeForce 8800 GTX has been CUDA-enabled. Since NVIDIA regularly 
releases new GPUs based on the CUDA Architecture, the following will undoubt-
edly be only a partial list of CUDA-enabled GPUs. Nevertheless, the GPUs are all 
CUDA-capable.

For a complete list, you should consult the NVIDIA website at www.nvidia.com/cuda, 
although it is safe to assume that all recent GPUs (GPUs from 2007 on) with more 
than 256MB of graphics memory can be used to develop and run code written 
with CUDA C.

www.nvidia.com/cuda
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GeForce GTX 480

GeForce GTX 470

GeForce GTX 295

GeForce GTX 285

GeForce GTX 285 for Mac

GeForce GTX 280

GeForce GTX 275

GeForce GTX 260

GeForce GTS 250

GeForce GT 220

GeForce G210

GeForce GTS 150

GeForce GT 130

GeForce GT 120

GeForce G100

GeForce 9800 GX2

GeForce 9800 GTX+

GeForce 9800 GTX

GeForce 9800 GT

GeForce 9600 GSO

GeForce 9600 GT

GeForce 9500 GT

GeForce 9400GT

GeForce 8800 Ultra

GeForce 8800 GTX

GeForce 8800 GTS

GeForce 8800 GT

GeForce 8800 GS

GeForce 8600 GTS

GeForce 8600 GT

GeForce 8500 GT

GeForce 8400 GS

GeForce 9400 mGPU

GeForce 9300 mGPU

GeForce 8300 mGPU

GeForce 8200 mGPU

GeForce 8100 mGPU

Tesla S2090

Tesla M2090

Tesla S2070

Tesla M2070

Tesla C2070

Tesla S2050

Tesla M2050

Tesla C2050

Tesla S1070

Tesla C1060

Tesla S870

Tesla C870

Tesla D870

QUADro mobile 
ProDUCtS

Quadro FX 3700M

Quadro FX 3600M

Quadro FX 2700M

Quadro FX 1700M

Quadro FX 1600M

Quadro FX 770M

Quadro FX 570M

Quadro FX 370M

Quadro FX 360M

Quadro NVS 320M

Quadro NVS 160M

Quadro NVS 150M

Quadro NVS 140M

Quadro NVS 135M

Quadro NVS 130M

Quadro FX 5800

Quadro FX 5600

Quadro FX 4800

Quadro FX 4800 for Mac

Quadro FX 4700 X2

Quadro FX 4600

Quadro FX 3800

Quadro FX 3700

Quadro FX 1800

Quadro FX 1700

Quadro FX 580

Quadro FX 570

Quadro FX 470

Quadro FX 380

Quadro FX 370

Quadro FX 370 Low Profile

Quadro CX

Quadro NVS 450

Quadro NVS 420

Quadro NVS 295

Quadro NVS 290

Quadro Plex 2100 D4

Quadro Plex 2200 D2

Quadro Plex 2100 S4

Quadro Plex 1000 Model IV

GeForCe mobile 
ProDUCtS

GeForce GTX 280M

GeForce GTX 260M

GeForce GTS 260M

GeForce GTS 250M

GeForce GTS 160M

GeForce GTS 150M

GeForce GT 240M

GeForce GT 230M

Table 2.1 CUDA-enabled GPUs

Continued
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Table 2.1 CUDA-enabled GPUs (Continued)

GeForce GT 130M 

GeForce G210M

GeForce G110M 

GeForce G105M 

GeForce G102M 

GeForce 9800M GTX

GeForce 9800M GT

GeForce 9800M GTS

GeForce 9800M GS

GeForce 9700M GTS

GeForce 9700M GT

GeForce 9650M GS

GeForce 9600M GT

GeForce 9600M GS

GeForce 9500M GS

GeForce 9500M G

GeForce 9300M GS

GeForce 9300M G

GeForce 9200M GS

GeForce 9100M G

GeForce 8800M GTS

GeForce 8700M GT

GeForce 8600M GT

GeForce 8600M GS

GeForce 8400M GT

GeForce 8400M GS

nvIdIA devIce drIver2.2.2 

NVIDIA provides system software that allows your programs to communicate  
with the CUDA-enabled hardware. If you have installed your NVIDIA GPU properly, 
you likely already have this software installed on your machine. It never hurts  
to ensure you have the most recent drivers, so we recommend that you visit  
www.nvidia.com/cuda and click the Download Drivers link. Select the options that 
match the graphics card and operating system on which you plan to do develop-
ment. After following the installation instructions for the platform of your choice, 
your system will be up-to-date with the latest NVIDIA system software. 

cudA develoPment toolKIt2.2.3 

If you have a CUDA-enabled GPU and NVIDIA’s device driver, you are ready to run 
compiled CUDA C code. This means that you can download CUDA-powered appli-
cations, and they will be able to successfully execute their code on your graphics 
processor. However, we assume that you want to do more than just run code 
because, otherwise, this book isn’t really necessary. If you want to develop code 
for NVIDIA GPUs using CUDA C, you will need additional software. But as prom-
ised earlier, none of it will cost you a penny.

You will learn these details in the next chapter, but since your CUDA C applica-
tions are going to be computing on two different processors, you are consequently 
going to need two compilers. One compiler will compile code for your GPU, and 
one will compile code for your CPU. NVIDIA provides the compiler for your GPU 
code. As with the NVIDIA device driver, you can download the CUDA Toolkit at 
http://developer.nvidia.com/object/gpucomputing.html. Click the CUDA Toolkit 
link to reach the download page shown in Figure 2.1.

www.nvidia.com/cuda
http://developer.nvidia.com/object/gpucomputing.html
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2.2 DEVELOPMENT ENVIRONMENT

Figure 2.1 The CUDA download page
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You will again be asked to select your platform from among 32- and 64-bit 
versions of Windows XP, Windows Vista, Windows 7, Linux, and Mac OS. From the 
available downloads, you need to download the CUDA Toolkit in order to build the 
code examples contained in this book. Additionally, you are encouraged, although 
not required, to download the GPU Computing SDK code samples, which contains 
dozens of helpful example programs. The GPU Computing SDK code samples will 
not be covered in this book, but they nicely complement the material we intend 
to cover, and as with learning any style of programming, the more examples, the 
better. You should also take note that although nearly all the code in this book will 
work on the Linux, Windows, and Mac OS platforms, we have targeted the appli-
cations toward Linux and Windows. If you are using Mac OS X, you will be living 
dangerously and using unsupported code examples.

stAndArd c comPIler2.2.4 

As we mentioned, you will need a compiler for GPU code and a compiler for 
CPU code. If you downloaded and installed the CUDA Toolkit as suggested in the 
previous section, you have a compiler for GPU code. A compiler for CPU code is 
the only component that remains on our CUDA checklist, so let’s address that 
issue so we can get to the interesting stuff.

wIndows

On Microsoft Windows platforms, including Windows XP, Windows Vista, Windows 
Server 2008, and Windows 7, we recommend using the Microsoft Visual Studio C 
compiler. NVIDIA currently supports both the Visual Studio 2005 and Visual Studio 
2008 families of products. As Microsoft releases new versions, NVIDIA will likely 
add support for newer editions of Visual Studio while dropping support for older 
versions. Many C and C++ developers already have Visual Studio 2005 or Visual 
Studio 2008 installed on their machine, so if this applies to you, you can safely 
skip this subsection. 

If you do not have access to a supported version of Visual Studio and aren’t ready 
to invest in a copy, Microsoft does provide free downloads of the Visual Studio 
2008 Express edition on its website. Although typically unsuitable for commercial 
software development, the Visual Studio Express editions are an excellent way to 
get started developing CUDA C on Windows platforms without investing money in 
software licenses. So, head on over to www.microsoft.com/visualstudio if you’re 
in need of Visual Studio 2008!

www.microsoft.com/visualstudio
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2.3 CHAPTER REVIEW

LINUX

Most Linux distributions typically ship with a version of the GNU C compiler 
(gcc) installed. As of CUDA 3.0, the following Linux distributions shipped with 
supported versions of gcc installed:

Red Hat Enterprise Linux 4.8• 

Red Hat Enterprise Linux 5.3• 

OpenSUSE 11.1• 

SUSE Linux Enterprise Desktop 11• 

Ubuntu 9.04• 

Fedora 10• 

If you’re a die-hard Linux user, you’re probably aware that many Linux software 
packages work on far more than just the “supported” platforms. The CUDA 
Toolkit is no exception, so even if your favorite distribution is not listed here, it 
may be worth trying it anyway. The distribution’s kernel, gcc, and glibc versions 
will in a large part determine whether the distribution is compatible.

MACINTOSH OS X

If you want to develop on Mac OS X, you will need to ensure that your machine  
has at least version 10.5.7 of Mac OS X. This includes version 10.6, Mac OS X 
“Snow Leopard.” Furthermore, you will need to install gcc by downloading 
and installing Apple’s Xcode. This software is provided free to Apple Developer 
Connection (ADC) members and can be downloaded from http://developer.apple.
com/tools/Xcode. The code in this book was developed on Linux and Windows 
platforms but should work without modification on Mac OS X systems.

Chapter Review2.3 
If you have followed the steps in this chapter, you are ready to start developing 
code in CUDA C. Perhaps you have even played around with some of the NVIDIA 
GPU Computing SDK code samples you downloaded from NVIDIA’s website. If so, 
we applaud your willingness to tinker! If not, don’t worry. Everything you need is 
right here in this book. Either way, you’re probably ready to start writing your first 
program in CUDA C, so let’s get started.

http://developer.apple.com/tools/Xcode
http://developer.apple.com/tools/Xcode
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Chapter 3 

Introduction to CUDA C

If you read Chapter 1, we hope we have convinced you of both the immense 
computational power of graphics processors and that you are just the 
programmer to harness it. And if you continued through Chapter 2, you should 
have a functioning environment set up in order to compile and run the code 
you’ll be writing in CUDA C. If you skipped the first chapters, perhaps you’re just 
skimming for code samples, perhaps you randomly opened to this page while 
browsing at a bookstore, or maybe you’re just dying to get started; that’s OK, too 
(we won’t tell). Either way, you’re ready to get started with the first code exam-
ples, so let’s go.
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Chapter Objectives3.1 
Through the course of this chapter, you will accomplish the following:

You will write your first lines of code in CUDA C.• 

You will learn the difference between code written for the • host and code written 
for a device.

You will learn how to run device code from the host.• 

You will learn about the ways device memory can be used on CUDA-capable • 
devices.

You will learn how to query your system for information on its CUDA-capable • 
devices.

A First Program3.2 
Since we intend to learn CUDA C by example, let’s take a look at our first example 
of CUDA C. In accordance with the laws governing written works of computer 
programming, we begin by examining a “Hello, World!” example.

HELLO, WORLD!3.2.1 

#include "../common/book.h"

int main( void ) {

    printf( "Hello, World!\n" );

    return 0;

}

At this point, no doubt you’re wondering whether this book is a scam. Is this just 
C? Does CUDA C even exist? The answers to these questions are both in the affir-
mative; this book is not an elaborate ruse. This simple “Hello, World!” example is 
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3.2 A FIRST PROGRAM

meant to illustrate that, at its most basic, there is no difference between CUDA C 
and the standard C to which you have grown accustomed. 

The simplicity of this example stems from the fact that it runs entirely on the host. 
This will be one of the important distinctions made in this book; we refer to the 
CPU and the system’s memory as the host and refer to the GPU and its memory 
as the device. This example resembles almost all the code you have ever written 
because it simply ignores any computing devices outside the host.

To remedy that sinking feeling that you’ve invested in nothing more than an 
expensive collection of trivialities, we will gradually build upon this simple 
example. Let’s look at something that uses the GPU (a device) to execute code.  
A function that executes on the device is typically called a kernel.

A Kernel cAll3.2.2 

Now we will build upon our example with some code that should look more 
foreign than our plain-vanilla “Hello, World!” program.

#include <iostream>

__global__ void kernel( void ) {

}

int main( void ) {

    kernel<<<1,1>>>();

    printf( "Hello, World!\n" );

    return 0;

}

This program makes two notable additions to the original “Hello, World!” 
example:

An empty function named • kernel() qualified with __global__

A call to the empty function, embellished with • <<<1,1>>>

As we saw in the previous section, code is compiled by your system’s standard 
C compiler by default. For example, GNU gcc might compile your host code 
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on Linux operating systems, while Microsoft Visual C compiles it on Windows 
systems. The NVIDIA tools simply feed this host compiler your code, and every-
thing behaves as it would in a world without CUDA. 

Now we see that CUDA C adds the __global__ qualifier to standard C. This 
mechanism alerts the compiler that a function should be compiled to run on 
a device instead of the host. In this simple example, nvcc gives the function 
kernel() to the compiler that handles device code, and it feeds main() to the 
host compiler as it did in the previous example.

So, what is the mysterious call to kernel(), and why must we vandalize our 
standard C with angle brackets and a numeric tuple? Brace yourself, because this 
is where the magic happens. 

We have seen that CUDA C needed a linguistic method for marking a function 
as device code. There is nothing special about this; it is shorthand to send host 
code to one compiler and device code to another compiler. The trick is actually in 
calling the device code from the host code. One of the benefits of CUDA C is that 
it provides this language integration so that device function calls look very much 
like host function calls. Later we will discuss what actually happens behind the 
scenes, but suffice to say that the CUDA compiler and runtime take care of the 
messy business of invoking device code from the host.

So, the mysterious-looking call invokes device code, but why the angle brackets 
and numbers? The angle brackets denote arguments we plan to pass to the 
runtime system. These are not arguments to the device code but are parameters 
that will influence how the runtime will launch our device code. We will learn 
about these parameters to the runtime in the next chapter. Arguments to the 
device code itself get passed within the parentheses, just like any other function 
invocation.

PAssInG PArAmeters3.2.3 

We’ve promised the ability to pass parameters to our kernel, and the time has 
come for us to make good on that promise. Consider the following enhancement 
to our “Hello, World!” application:
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3.2 A FIRST PROGRAM

#include <iostream>

#include "book.h"

__global__ void add( int a, int b, int *c ) {

    *c = a + b;

}

int main( void ) {

    int c;

    int *dev_c;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_c, sizeof(int) ) );

    add<<<1,1>>>( 2, 7, dev_c );

    HANDLE_ERROR( cudaMemcpy( &c, 

                              dev_c, 

                              sizeof(int), 

                              cudaMemcpyDeviceToHost ) );

    printf( "2 + 7 = %d\n", c );

    cudaFree( dev_c );

    return 0;

}

You will notice a handful of new lines here, but these changes introduce only two 
concepts:

We can pass parameters to a kernel as we would with any C function.• 

We need to allocate memory to do anything useful on a device, such as return • 
values to the host.

There is nothing special about passing parameters to a kernel. The angle-bracket 
syntax notwithstanding, a kernel call looks and acts exactly like any function call 
in standard C. The runtime system takes care of any complexity introduced by the 
fact that these parameters need to get from the host to the device.
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The more interesting addition is the allocation of memory using cudaMalloc(). 
This call behaves very similarly to the standard C call malloc(), but it tells 
the CUDA runtime to allocate the memory on the device. The first argument 
is a pointer to the pointer you want to hold the address of the newly allocated 
memory, and the second parameter is the size of the allocation you want to make. 
Besides that your allocated memory pointer is not the function’s return value, 
this is identical behavior to malloc(), right down to the void* return type. The 
HANDLE_ERROR() that surrounds these calls is a utility macro that we have 
provided as part of this book’s support code. It simply detects that the call has 
returned an error, prints the associated error message, and exits the application 
with an EXIT_FAILURE code. Although you are free to use this code in your own 
applications, it is highly likely that this error-handling code will be insufficient in 
production code.

This raises a subtle but important point. Much of the simplicity and power of 
CUDA C derives from the ability to blur the line between host and device code. 
However, it is the responsibility of the programmer not to dereference the pointer 
returned by cudaMalloc() from code that executes on the host. Host code may 
pass this pointer around, perform arithmetic on it, or even cast it to a different 
type. But you cannot use it to read or write from memory. 

Unfortunately, the compiler cannot protect you from this mistake, either. It will 
be perfectly happy to allow dereferences of device pointers in your host code 
because it looks like any other pointer in the application. We can summarize the 
restrictions on the usage of device pointer as follows:

You can pass pointers allocated with cudaMalloc() to functions that 
execute on the device.

You can use pointers allocated with cudaMalloc()to read or write 
memory from code that executes on the device.

You can pass pointers allocated with cudaMalloc()to functions that 
execute on the host.

You cannot use pointers allocated with cudaMalloc()to read or write 
memory from code that executes on the host.

If you’ve been reading carefully, you might have anticipated the next lesson: We 
can’t use standard C’s free() function to release memory we’ve allocated with 
cudaMalloc(). To free memory we’ve allocated with cudaMalloc(), we need 
to use a call to cudaFree(), which behaves exactly like free() does.
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3.3 QUERYING DEVICES

We’ve seen how to use the host to allocate and free memory on the device, but 
we’ve also made it painfully clear that you cannot modify this memory from the 
host. The remaining two lines of the sample program illustrate two of the most 
common methods for accessing device memory—by using device pointers from 
within device code and by using calls to cudaMemcpy().

We use pointers from within device code exactly the same way we use them in 
standard C that runs on the host code. The statement *c = a + b is as simple 
as it looks. It adds the parameters a and b together and stores the result in the 
memory pointed to by c. We hope this is almost too easy to even be interesting.

We listed the ways in which we can and cannot use device pointers from within 
device and host code. These caveats translate exactly as one might imagine 
when considering host pointers. Although we are free to pass host pointers 
around in device code, we run into trouble when we attempt to use a host pointer 
to access memory from within device code. To summarize, host pointers can 
access memory from host code, and device pointers can access memory from 
device code.

As promised, we can also access memory on a device through calls to 
cudaMemcpy()from host code. These calls behave exactly like standard C 
memcpy() with an additional parameter to specify which of the source and 
destination pointers point to device memory. In the example, notice that the last 
parameter to cudaMemcpy() is cudaMemcpyDeviceToHost, instructing the 
runtime that the source pointer is a device pointer and the destination pointer is a 
host pointer.

Unsurprisingly, cudaMemcpyHostToDevice would indicate the opposite situ-
ation, where the source data is on the host and the destination is an address on 
the device. Finally, we can even specify that both pointers are on the device by 
passing cudaMemcpyDeviceToDevice. If the source and destination pointers 
are both on the host, we would simply use standard C’s memcpy() routine to copy 
between them.

Querying Devices3.3 
Since we would like to be allocating memory and executing code on our device, 
it would be useful if our program had a way of knowing how much memory and 
what types of capabilities the device had. Furthermore, it is relatively common for 
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people to have more than one CUDA-capable device per computer. In situations 
like this, we will definitely want a way to determine which processor is which.

For example, many motherboards ship with integrated NVIDIA graphics proces-
sors. When a manufacturer or user adds a discrete graphics processor to this 
computer, it then possesses two CUDA-capable processors. Some NVIDIA prod-
ucts, like the GeForce GTX 295, ship with two GPUs on a single card. Computers 
that contain products such as this will also show two CUDA-capable processors.

Before we get too deep into writing device code, we would love to have a 
 mechanism for determining which devices (if any) are present and what capa-
bilities each device supports. Fortunately, there is a very easy interface to 
determine this information. First, we will want to know how many devices in the 
system were built on the CUDA Architecture. These devices will be capable of 
executing kernels written in CUDA C. To get the count of CUDA devices, we call 
 cudaGetDeviceCount(). Needless to say, we anticipate receiving an award 
for Most Creative Function Name.

    int count;

    HANDLE_ERROR( cudaGetDeviceCount( &count ) );

After calling cudaGetDeviceCount(), we can then iterate through the devices 
and query relevant information about each. The CUDA runtime returns us these 
properties in a structure of type cudaDeviceProp. What kind of properties 
can we retrieve? As of CUDA 3.0, the cudaDeviceProp structure contains the 
following:

    struct cudaDeviceProp {

        char name[256];

        size_t totalGlobalMem;

        size_t sharedMemPerBlock;

        int regsPerBlock;

        int warpSize;

        size_t memPitch;

        int maxThreadsPerBlock;

        int maxThreadsDim[3];

        int maxGridSize[3];

        size_t totalConstMem;

        int major;
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        int minor;

        int clockRate;

        size_t textureAlignment;

        int deviceOverlap;

        int multiProcessorCount;

        int kernelExecTimeoutEnabled;

        int integrated;

        int canMapHostMemory;

        int computeMode;

        int maxTexture1D;

        int maxTexture2D[2];

        int maxTexture3D[3];

        int maxTexture2DArray[3];

        int concurrentKernels;

    }

Some of these are self-explanatory; others bear some additional description (see 
Table 3.1).

Table 3.1 CUDA Device Properties

DEvICE ProPErty DESCrIPtIoN

char name[256]; An ASCII string identifying the device (e.g., 
"GeForce GTX 280")

size_t totalGlobalMem The amount of global memory on the device in 
bytes

size_t sharedMemPerBlock The maximum amount of shared memory a single 
block may use in bytes

int regsPerBlock The number of 32-bit registers available per block

int warpSize The number of threads in a warp

size_t memPitch The maximum pitch allowed for memory copies in 
bytes

Continued
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DEvICE ProPErty DESCrIPtIoN

int maxThreadsPerBlock The maximum number of threads that a block may 
contain

int maxThreadsDim[3] The maximum number of threads allowed along 
each dimension of a block

int maxGridSize[3] The number of blocks allowed along each 
dimension of a grid

size_t totalConstMem The amount of available constant memory

int major The major revision of the device’s compute 
capability

int minor The minor revision of the device’s compute 
capability

size_t textureAlignment The device’s requirement for texture alignment

int deviceOverlap A boolean value representing whether the device 
can simultaneously perform a cudaMemcpy() 
and kernel execution

int multiProcessorCount The number of multiprocessors on the device

int kernelExecTimeoutEnabled A boolean value representing whether there is a 
runtime limit for kernels executed on this device

int integrated A boolean value representing whether the device is 
an integrated GPU (i.e., part of the chipset and not a 
discrete GPU)

int canMapHostMemory A boolean value representing whether the device 
can map host memory into the CUDA device 
address space

int computeMode A value representing the device’s computing mode: 
default, exclusive, or prohibited

int maxTexture1D The maximum size supported for 1D textures

Table 3.1 Caption needed (Continued)
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3.3 QUERYING DEVICES

DEvICE ProPErty DESCrIPtIoN

int maxTexture2D[2] The maximum dimensions supported for 2D 
textures

int maxTexture3D[3] The maximum dimensions supported for 3D 
textures

int maxTexture2DArray[3] The maximum dimensions supported for 2D 
texture arrays

int concurrentKernels A boolean value representing whether the device 
supports executing multiple kernels within the 
same context simultaneously

We’d like to avoid going too far, too fast down our rabbit hole, so we will not 
go into extensive detail about these properties now. In fact, the previous list is 
missing some important details about some of these properties, so you will want 
to consult the NVIDIA CUDA Programming Guide for more information. When you 
move on to write your own applications, these properties will prove extremely 
useful. However, for now we will simply show how to query each device and report 
the properties of each. So far, our device query looks something like this:

#include "../common/book.h"

int main( void ) {

    cudaDeviceProp  prop;

    int count;

    HANDLE_ERROR( cudaGetDeviceCount( &count ) );

    for (int i=0; i< count; i++) {

        HANDLE_ERROR( cudaGetDeviceProperties( &prop, i ) );

        //Do something with our device's properties

    }

}

Table 3.1 CUDA Device Properties (Continued)
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Now that we know each of the fields available to us, we can expand on the 
ambiguous “Do something...” section and implement something marginally less 
trivial:

#include "../common/book.h"

int main( void ) {

    cudaDeviceProp  prop;

    int count;

    HANDLE_ERROR( cudaGetDeviceCount( &count ) );

    for (int i=0; i< count; i++) {

        HANDLE_ERROR( cudaGetDeviceProperties( &prop, i ) );

        printf( "   --- General Information for device %d ---\n", i );

        printf( "Name:  %s\n", prop.name );

        printf( "Compute capability:  %d.%d\n", prop.major, prop.minor );

        printf( "Clock rate:  %d\n", prop.clockRate );

        printf( "Device copy overlap:  " );

        if (prop.deviceOverlap)

            printf( "Enabled\n" );

        else

            printf( "Disabled\n" );

        printf( "Kernel execition timeout :  " );

        if (prop.kernelExecTimeoutEnabled)

            printf( "Enabled\n" );

        else

            printf( "Disabled\n" );

        printf( "   --- Memory Information for device %d ---\n", i );

        printf( "Total global mem:  %ld\n", prop.totalGlobalMem );

        printf( "Total constant Mem:  %ld\n", prop.totalConstMem );

        printf( "Max mem pitch:  %ld\n", prop.memPitch );

        printf( "Texture Alignment:  %ld\n", prop.textureAlignment );
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        printf( "   --- MP Information for device %d ---\n", i );

        printf( "Multiprocessor count:  %d\n",

                    prop.multiProcessorCount );

        printf( "Shared mem per mp:  %ld\n", prop.sharedMemPerBlock );

        printf( "Registers per mp:  %d\n", prop.regsPerBlock );

        printf( "Threads in warp:  %d\n", prop.warpSize );

        printf( "Max threads per block:  %d\n",

                    prop.maxThreadsPerBlock );

        printf( "Max thread dimensions:  (%d, %d, %d)\n",

                    prop.maxThreadsDim[0], prop.maxThreadsDim[1],

                    prop.maxThreadsDim[2] );

        printf( "Max grid dimensions:  (%d, %d, %d)\n",

                    prop.maxGridSize[0], prop.maxGridSize[1],

                    prop.maxGridSize[2] );

        printf( "\n" );

    }

}

Using Device Properties3.4 
Other than writing an application that handily prints every detail of every CUDA-
capable card, why might we be interested in the properties of each device in our 
system? Since we as software developers want everyone to think our software is 
fast, we might be interested in choosing the GPU with the most multiprocessors 
on which to run our code. Or if the kernel needs close interaction with the CPU, 
we might be interested in running our code on the integrated GPU that shares 
system memory with the CPU. These are both properties we can query with 
cudaGetDeviceProperties().

Suppose that we are writing an application that depends on having double-
precision floating-point support. After a quick consultation with Appendix A of the 
NVIDIA CUDA Programming Guide, we know that cards that have compute capa-
bility 1.3 or higher support double-precision floating-point math. So to success-
fully run the double-precision application that we’ve written, we need to find at 
least one device of compute capability 1.3 or higher.
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Based on what we have seen with cudaGetDeviceCount() and 
 cudaGetDeviceProperties(), we could iterate through each device and look 
for one that either has a major version greater than 1 or has a major version of 
1 and minor version greater than or equal to 3. But since this relatively common 
procedure is also relatively annoying to perform, the CUDA runtime offers us an 
automated way to do this. We first fill a cudaDeviceProp structure with the 
properties we need our device to have.

    cudaDeviceProp  prop;

    memset( &prop, 0, sizeof( cudaDeviceProp ) );

    prop.major = 1;

    prop.minor = 3;

After filling a cudaDeviceProp structure, we pass it to 
 cudaChooseDevice() to have the CUDA runtime find a device that satisfies 
this constraint. The call to cudaChooseDevice() returns a device ID that we 
can then pass to  cudaSetDevice(). From this point forward, all device opera-
tions will take place on the device we found in cudaChooseDevice().

#include "../common/book.h"

int main( void ) {

    cudaDeviceProp  prop;

    int dev;

    HANDLE_ERROR( cudaGetDevice( &dev ) );

    printf( "ID of current CUDA device:  %d\n", dev );

    memset( &prop, 0, sizeof( cudaDeviceProp ) );

    prop.major = 1;

    prop.minor = 3;

    HANDLE_ERROR( cudaChooseDevice( &dev, &prop ) );

    printf( "ID of CUDA device closest to revision 1.3:  %d\n", dev );

    HANDLE_ERROR( cudaSetDevice( dev ) );

}
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3.5 CHAPTER REVIEW

Systems with multiple GPUs are becoming more and more common. For 
example, many of NVIDIA’s motherboard chipsets contain integrated, CUDA-
capable GPUs. When a discrete GPU is added to one of these systems, you 
suddenly have a multi-GPU platform. Moreover, NVIDIA’s SLI technology allows 
multiple discrete GPUs to be installed side by side. In either of these cases, your 
application may have a preference of one GPU over another. If your application 
depends on certain features of the GPU or depends on having the fastest GPU 
in the system, you should familiarize yourself with this API because there is no 
guarantee that the CUDA runtime will choose the best or most appropriate GPU 
for your application.

Chapter Review3.5 
We’ve finally gotten our hands dirty writing CUDA C, and ideally it has been less 
painful than you might have suspected. Fundamentally, CUDA C is standard C 
with some ornamentation to allow us to specify which code should run on the 
device and which should run on the host. By adding the keyword __global__ 
before a function, we indicated to the compiler that we intend to run the function 
on the GPU. To use the GPU’s dedicated memory, we also learned a CUDA API 
similar to C’s malloc(), memcpy(), and free() APIs. The CUDA versions of 
these functions, cudaMalloc(), cudaMemcpy(), and cudaFree(), allow us 
to allocate device memory, copy data between the device and host, and free the 
device memory when we’ve finished with it. 

As we progress through this book, we will see more interesting examples of 
how we can effectively use the device as a massively parallel coprocessor. For 
now, you should know how easy it is to get started with CUDA C, and in the next 
chapter we will see how easy it is to execute parallel code on the GPU.
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Chapter 4

Parallel Programming 
in CUDA C

In the previous chapter, we saw how simple it can be to write code that executes 
on the GPU. We have even gone so far as to learn how to add two numbers 
together, albeit just the numbers 2 and 7. Admittedly, that example was not 
immensely impressive, nor was it incredibly interesting. But we hope you are 
convinced that it is easy to get started with CUDA C and you’re excited to learn 
more. Much of the promise of GPU computing lies in exploiting the massively 
parallel structure of many problems. In this vein, we intend to spend this chapter 
examining how to execute parallel code on the GPU using CUDA C. 
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Chapter Objectives4.1 
Through the course of this chapter, you will accomplish the following:

You will learn one of the fundamental ways CUDA exposes its parallelism.• 

You will write your first parallel code with CUDA C.• 

CUDA Parallel Programming4.2 
Previously, we saw how easy it was to get a standard C function to start running 
on a device. By adding the __global__  qualifier to the function and by calling 
it using a special angle bracket syntax, we executed the function on our GPU. 
Although this was extremely simple, it was also extremely inefficient because 
NVIDIA’s hardware engineering minions have optimized their graphics processors 
to perform hundreds of computations in parallel. However, thus far we have only 
ever launched a kernel that runs serially on the GPU. In this chapter, we see how 
straightforward it is to launch a device kernel that performs its computations in 
parallel. 

summInG vectors4.2.1 

We will contrive a simple example to illustrate threads and how we use them to 
code with CUDA C. Imagine having two lists of numbers where we want to sum 
corresponding elements of each list and store the result in a third list. Figure 4.1 
shows this process. If you have any background in linear algebra, you will recog-
nize this operation as summing two vectors.
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c

a

b

Figure 4.1 Summing two vectors

cPu vector sums

First we’ll look at one way this addition can be accomplished with traditional C code:

#include "../common/book.h"

#define N   10

void add( int *a, int *b, int *c ) {

    int tid = 0;    // this is CPU zero, so we start at zero

    while (tid < N) {

        c[tid] = a[tid] + b[tid];

        tid += 1;   // we have one CPU, so we increment by one

    }

}

int main( void ) {

    int a[N], b[N], c[N];

    // fill the arrays 'a' and 'b' on the CPU

    for (int i=0; i<N; i++) {

        a[i] = -i;

        b[i] = i * i;

    }

    add( a, b, c );



PArAllel ProGrAmmInG In cudA c

40

    // display the results

    for (int i=0; i<N; i++) {

        printf( "%d + %d = %d\n", a[i], b[i], c[i] );

    }

    return 0;

}

Most of this example bears almost no explanation, but we will briefly look at the 
add() function to explain why we overly complicated it.

void add( int *a, int *b, int *c ) {

    int tid = 0;    // this is CPU zero, so we start at zero

    while (tid < N) {

        c[tid] = a[tid] + b[tid];

        tid += 1;   // we have one CPU, so we increment by one

    }

}

We compute the sum within a while loop where the index tid ranges from 0 to 
N-1. We add corresponding elements of a[] and b[], placing the result in the 
corresponding element of c[]. One would typically code this in a slightly simpler 
manner, like so:

void add( int *a, int *b, int *c ) {

    for (i=0; i < N; i++) {

        c[i] = a[i] + b[i];

    }

}

Our slightly more convoluted method was intended to suggest a potential way to 
parallelize the code on a system with multiple CPUs or CPU cores. For example, 
with a dual-core processor, one could change the increment to 2 and have one 
core initialize the loop with tid = 0 and another with tid = 1. The first core 
would add the even-indexed elements, and the second core would add the odd-
indexed elements. This amounts to executing the following code on each of the 
two CPU cores:
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CPU Core 1 CPU Core 2

void add( int *a, int *b, int *c ) 
{
    int tid = 0;
    while (tid < N) {
        c[tid] = a[tid] + b[tid];
        tid += 2;
    }
}

void add( int *a, int *b, int *c ) 
{
    int tid = 1;
    while (tid < N) {
        c[tid] = a[tid] + b[tid];
        tid += 2;
    }
}

Of course, doing this on a CPU would require considerably more code than we 
have included in this example. You would need to provide a reasonable amount of 
infrastructure to create the worker threads that execute the function add() as 
well as make the assumption that each thread would execute in parallel, a sched-
uling assumption that is unfortunately not always true.

GPu vector sums

We can accomplish the same addition very similarly on a GPU by writing add() 
as a device function. This should look similar to code you saw in the previous 
chapter. But before we look at the device code, we present main(). Although the 
GPU implementation of main() is different from the corresponding CPU version, 
nothing here should look new: 

#include "../common/book.h"

#define N   10

int main( void ) {

    int a[N], b[N], c[N];

    int *dev_a, *dev_b, *dev_c;

    // allocate the memory on the GPU

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_c, N * sizeof(int) ) );

    // fill the arrays 'a' and 'b' on the CPU

    for (int i=0; i<N; i++) {

        a[i] = -i;

        b[i] = i * i;

    }
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    // copy the arrays 'a' and 'b' to the GPU

    HANDLE_ERROR( cudaMemcpy( dev_a, a, N * sizeof(int),

                              cudaMemcpyHostToDevice ) );

    HANDLE_ERROR( cudaMemcpy( dev_b, b, N * sizeof(int),

                              cudaMemcpyHostToDevice ) );

    add<<<N,1>>>( dev_a, dev_b, dev_c );

    // copy the array 'c' back from the GPU to the CPU

    HANDLE_ERROR( cudaMemcpy( c, dev_c, N * sizeof(int),

                              cudaMemcpyDeviceToHost ) );

    // display the results

    for (int i=0; i<N; i++) {

        printf( "%d + %d = %d\n", a[i], b[i], c[i] );

    }

    // free the memory allocated on the GPU

    cudaFree( dev_a );

    cudaFree( dev_b );

    cudaFree( dev_c );

    return 0;

}

You will notice some common patterns that we employ again:

We allocate three arrays on the device using calls to • cudaMalloc(): two 
arrays, dev_a and dev_b, to hold inputs, and one array, dev_c, to hold the 
result. 

Because we are environmentally conscientious coders, we clean up after • 
ourselves with cudaFree().

Using • cudaMemcpy(), we copy the input data to the device with the parameter 
cudaMemcpyHostToDevice and copy the result data back to the host with 
cudaMemcpyDeviceToHost.

We execute the device code in • add() from the host code in main() using the 
triple angle bracket syntax.
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As an aside, you may be wondering why we fill the input arrays on the CPU. There 
is no reason in particular why we need to do this. In fact, the performance of this 
step would be faster if we filled the arrays on the GPU. But we intend to show how 
a particular operation, namely, the addition of two vectors, can be implemented 
on a graphics processor. As a result, we ask you to imagine that this is but one 
step of a larger application where the input arrays a[] and b[] have been 
generated by some other algorithm or loaded from the hard drive by the user. In 
summary, it will suffice to pretend that this data appeared out of nowhere and 
now we need to do something with it.

Moving on, our add() routine looks similar to its corresponding CPU 
implementation:

__global__ void add( int *a, int *b, int *c ) {

    int tid = blockIdx.x;    // handle the data at this index

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}

Again we see a common pattern with the function add():

We have written a function called • add() that executes on the device. We 
accomplished this by taking C code and adding a __global__ qualifier to  
the function name.

So far, there is nothing new in this example except it can do more than add 2 and 
7. However, there are two noteworthy components of this example: The param-
eters within the triple angle brackets and the code contained in the kernel itself 
both introduce new concepts.

Up to this point, we have always seen kernels launched in the following form:

        kernel<<<1,1>>>( param1, param2, … );

But in this example we are launching with a number in the angle brackets that is 
not 1:

        add<<<N,1>>>( dev _ a, dev _ b, dev _ c );

What gives?
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Recall that we left those two numbers in the angle brackets unexplained; we 
stated vaguely that they were parameters to the runtime that describe how to 
launch the kernel. Well, the first number in those parameters represents the 
number of parallel blocks in which we would like the device to execute our kernel. 
In this case, we’re passing the value N for this parameter. 

For example, if we launch with kernel<<<2,1>>>(), you can think of the 
runtime creating two copies of the kernel and running them in parallel. We call 
each of these parallel invocations a block. With kernel<<<256,1>>>(), you 
would get 256 blocks running on the GPU. Parallel programming has never been 
easier.

But this raises an excellent question: The GPU runs N copies of our kernel code, 
but how can we tell from within the code which block is currently running? This 
question brings us to the second new feature of the example, the kernel code 
itself. Specifically, it brings us to the variable blockIdx.x:

__global__ void add( int *a, int *b, int *c ) {

    int tid = blockIdx.x;    // handle the data at this index

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}

At first glance, it looks like this variable should cause a syntax error at compile 
time since we use it to assign the value of tid, but we have never defined it. 
However, there is no need to define the variable blockIdx; this is one of the 
built-in variables that the CUDA runtime defines for us. Furthermore, we use this 
variable for exactly what it sounds like it means. It contains the value of the block 
index for whichever block is currently running the device code.

Why, you may then ask, is it not just blockIdx? Why blockIdx.x? As it turns 
out, CUDA C allows you to define a group of blocks in two dimensions. For prob-
lems with two-dimensional domains, such as matrix math or image processing, 
it is often convenient to use two-dimensional indexing to avoid annoying transla-
tions from linear to rectangular indices. Don’t worry if you aren’t familiar with 
these problem types; just know that using two-dimensional indexing can some-
times be more convenient than one-dimensional indexing. But you never have to 
use it. We won’t be offended.
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When we launched the kernel, we specified N as the number of parallel blocks. 
We call the collection of parallel blocks a grid. This specifies to the runtime 
system that we want a one-dimensional grid of N blocks (scalar values are 
interpreted as one-dimensional). These threads will have varying values for 
blockIdx.x, the first taking value 0 and the last taking value N-1. So, imagine 
four blocks, all running through the same copy of the device code but having 
different values for the variable blockIdx.x. This is what the actual code being 
executed in each of the four parallel blocks looks like after the runtime substi-
tutes the appropriate block index for blockIdx.x:

bloCK 1 bloCK 2

__global__ void 

add( int *a, int *b, int *c ) {

    int tid = 0;

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}

__global__ void 

add( int *a, int *b, int *c ) {

    int tid = 1;

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}

bloCK 3 bloCK 4

__global__ void 

add( int *a, int *b, int *c ) {

    int tid = 2;

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}

__global__ void 

add( int *a, int *b, int *c ) {

    int tid = 3;

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}

If you recall the CPU-based example with which we began, you will recall that we 
needed to walk through indices from 0 to N-1 in order to sum the two vectors. 
Since the runtime system is already launching a kernel where each block will 
have one of these indices, nearly all of this work has already been done for us. 
Because we’re something of a lazy lot, this is a good thing. It affords us more time 
to blog, probably about how lazy we are.

The last remaining question to be answered is, why do we check whether tid 
is less than N? It should always be less than N, since we’ve specifically launched 
our kernel such that this assumption holds. But our desire to be lazy also makes 
us paranoid about someone breaking an assumption we’ve made in our code. 
Breaking code assumptions means broken code. This means bug reports, late 
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nights tracking down bad behavior, and generally lots of activities that stand 
between us and our blog. If we didn’t check that tid is less than N and subse-
quently fetched memory that wasn’t ours, this would be bad. In fact, it could 
possibly kill the execution of your kernel, since GPUs have sophisticated memory 
management units that kill processes that seem to be violating memory rules.

If you encounter problems like the ones just mentioned, one of the  HANDLE_
ERROR() macros that we’ve sprinkled so liberally throughout the code will 
detect and alert you to the situation. As with traditional C programming, the 
lesson here is that functions return error codes for a reason. Although it is 
always tempting to ignore these error codes, we would love to save you the hours 
of pain through which we have suffered by urging that you check the results of 
every operation that can fail. As is often the case, the presence of these errors 
will not prevent you from continuing the execution of your application, but they 
will most certainly cause all manner of unpredictable and unsavory side effects 
downstream.

At this point, you’re running code in parallel on the GPU. Perhaps you had heard 
this was tricky or that you had to understand computer graphics to do general-
purpose programming on a graphics processor. We hope you are starting to see 
how CUDA C makes it much easier to get started writing parallel code on a GPU. 
We used the example only to sum vectors of length 10. If you would like to see 
how easy it is to generate a massively parallel application, try changing the 10 in 
the line #define N 10 to 10000 or 50000 to launch tens of thousands of parallel 
blocks. Be warned, though: No dimension of your launch of blocks may exceed 
65,535. This is simply a hardware-imposed limit, so you will start to see failures if 
you attempt launches with more blocks than this. In the next chapter, we will see 
how to work within this limitation.

A FUN EXAMPLE4.2.2 

We don’t mean to imply that adding vectors is anything less than fun, but the 
following example will satisfy those looking for some flashy examples of parallel 
CUDA C. 

The following example will demonstrate code to draw slices of the Julia Set. For 
the uninitiated, the Julia Set is the boundary of a certain class of functions over 
complex numbers. Undoubtedly, this sounds even less fun than vector addi-
tion and matrix multiplication. However, for almost all values of the  function’s 
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 parameters, this boundary forms a fractal, one of the most interesting and beau-
tiful curiosities of mathematics.

The calculations involved in generating such a set are quite simple. At its heart, 
the Julia Set evaluates a simple iterative equation for points in the complex plane. 
A point is not in the set if the process of iterating the equation diverges for that 
point. That is, if the sequence of values produced by iterating the equation grows 
toward infinity, a point is considered outside the set. Conversely, if the values 
taken by the equation remain bounded, the point is in the set. 

Computationally, the iterative equation in question is remarkably simple, as 
shown in Equation 4.1.

Equation 4.1 

Computing an iteration of Equation 4.1 would therefore involve squaring the 
current value and adding a constant to get the next value of the equation. 

cPu JulIA set

We will examine a source listing now that will compute and visualize the Julia 
Set. Since this is a more complicated program than we have studied so far, we will 
split it into pieces here. Later in the chapter, you will see the entire source listing.

int main( void ) {

    CPUBitmap bitmap( DIM, DIM );

    unsigned char *ptr = bitmap.get_ptr();

    kernel( ptr );

    bitmap.display_and_exit();

}

Our main routine is remarkably simple. It creates the appropriate size bitmap 
image using a utility library provided. Next, it passes a pointer to the bitmap data 
to the kernel function.
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void kernel( unsigned char *ptr ){

    for (int y=0; y<DIM; y++) {

        for (int x=0; x<DIM; x++) {

            int offset = x + y * DIM;

            int juliaValue = julia( x, y );

            ptr[offset*4 + 0] = 255 * juliaValue;

            ptr[offset*4 + 1] = 0;

            ptr[offset*4 + 2] = 0;

            ptr[offset*4 + 3] = 255;

        }

    }

 }

The computation kernel does nothing more than iterate through all points we 
care to render, calling julia()on each to determine membership in the Julia 
Set. The function julia()will return 1 if the point is in the set and 0 if it is not 
in the set. We set the point’s color to be red if julia()returns 1 and black if it 
returns 0. These colors are arbitrary, and you should feel free to choose a color 
scheme that matches your personal aesthetics.

int julia( int x, int y ) {

    const float scale = 1.5;

    float jx = scale * (float)(DIM/2 - x)/(DIM/2);

    float jy = scale * (float)(DIM/2 - y)/(DIM/2);

    cuComplex c(-0.8, 0.156);

    cuComplex a(jx, jy);

    int i = 0;

    for (i=0; i<200; i++) {

        a = a * a + c;

        if (a.magnitude2() > 1000)

            return 0;

    }

    return 1;

}
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This function is the meat of the example. We begin by translating our pixel 
coordinate to a coordinate in complex space. To center the complex plane at the 
image center, we shift by DIM/2. Then, to ensure that the image spans the range 
of -1.0 to 1.0, we scale the image coordinate by DIM/2. Thus, given an image 
point at (x,y), we get a point in complex space at ( (DIM/2 – x)/(DIM/2), 
((DIM/2 – y)/(DIM/2) ).

Then, to potentially zoom in or out, we introduce a scale factor. Currently, the scale 
is hard-coded to be 1.5, but you should tweak this parameter to zoom in or out. If you 
are feeling really ambitious, you could make this a command-line parameter. 

After obtaining the point in complex space, we then need to determine whether 
the point is in or out of the Julia Set. If you recall the previous section, we do this 
by computing the values of the iterative equation Zn+1 = zn

2 + C. Since C is some 
arbitrary complex-valued constant, we have chosen -0.8 + 0.156i because it 
happens to yield an interesting picture. You should play with this constant if you 
want to see other versions of the Julia Set.

In the example, we compute 200 iterations of this function. After each iteration, 
we check whether the magnitude of the result exceeds some threshold (1,000 for 
our purposes). If so, the equation is diverging, and we can return 0 to indicate that 
the point is not in the set. On the other hand, if we finish all 200 iterations and the 
magnitude is still bounded under 1,000, we assume that the point is in the set, 
and we return 1 to the caller, kernel(). 

Since all the computations are being performed on complex numbers, we define 
a generic structure to store complex numbers. 

struct cuComplex {

    float   r;

    float   i;

    cuComplex( float a, float b ) : r(a), i(b)  {}

    float magnitude2( void ) { return r * r + i * i; }

    cuComplex operator*(const cuComplex& a) {

        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);

    }

    cuComplex operator+(const cuComplex& a) {

        return cuComplex(r+a.r, i+a.i);

    }

};
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The class represents complex numbers with two data elements: a single-
 precision real component r and a single-precision imaginary component i. 
The class defines addition and multiplication operators that combine complex 
numbers as expected. (If you are completely unfamiliar with complex numbers, 
you can get a quick primer online.) Finally, we define a method that returns the 
magnitude of the complex number. 

GPu JulIA set

The device implementation is remarkably similar to the CPU version, continuing a 
trend you may have noticed.

int main( void ) {

    CPUBitmap bitmap( DIM, DIM );

    unsigned char    *dev_bitmap;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap, 

                              bitmap.image_size() ) );

    dim3    grid(DIM,DIM);

    kernel<<<grid,1>>>( dev_bitmap );

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), 

                              dev_bitmap, 

                              bitmap.image_size(), 

                              cudaMemcpyDeviceToHost ) );

    bitmap.display_and_exit();

    cudaFree( dev_bitmap );

}

This version of main() looks much more complicated than the CPU version, but 
the flow is actually identical. Like with the CPU version, we create a DIM x DIM 
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bitmap image using our utility library. But because we will be doing computa-
tion on a GPU, we also declare a pointer called dev_bitmap to hold a copy 
of the data on the device. And to hold data, we need to allocate memory using 
cudaMalloc(). 

We then run our kernel() function exactly like in the CPU version, although 
now it is a __global__ function, meaning it will run on the GPU. As with the 
CPU example, we pass kernel() the pointer we allocated in the previous line to 
store the results. The only difference is that the memory resides on the GPU now, 
not on the host system.

The most significant difference is that we specify how many parallel blocks on 
which to execute the function kernel(). Because each point can be computed 
independently of every other point, we simply specify one copy of the function for 
each point we want to compute. We mentioned that for some problem domains, 
it helps to use two-dimensional indexing. Unsurprisingly, computing function 
values over a two-dimensional domain such as the complex plane is one of these 
problems. So, we specify a two-dimensional grid of blocks in this line:

    dim3 grid(DIM,DIM);

The type dim3 is not a standard C type, lest you feared you had forgotten some 
key pieces of information. Rather, the CUDA runtime header files define some 
convenience types to encapsulate multidimensional tuples. The type dim3 repre-
sents a three-dimensional tuple that will be used to specify the size of our launch. 
But why do we use a three-dimensional value when we oh-so-clearly stated that 
our launch is a two-dimensional grid? 

Frankly, we do this because a three-dimensional, dim3 value is what the CUDA 
runtime expects. Although a three-dimensional launch grid is not currently 
supported, the CUDA runtime still expects a dim3 variable where the last compo-
nent equals 1. When we initialize it with only two values, as we do in the state-
ment dim3 grid(DIM,DIM), the CUDA runtime automatically fills the third 
dimension with the value 1, so everything here will work as expected. Although 
it’s possible that NVIDIA will support a three-dimensional grid in the future, for 
now we’ll just play nicely with the kernel launch API because when coders and 
APIs fight, the API always wins.
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We then pass our dim3 variable grid to the CUDA runtime in this line:

    kernel<<<grid,1>>>( dev _ bitmap );

Finally, a consequence of the results residing on the device is that after executing 
kernel(), we have to copy the results back to the host. As we learned in 
previous chapters, we accomplish this with a call to cudaMemcpy(), specifying 
the direction cudaMemcpyDeviceToHost as the last argument.

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), 

                              dev_bitmap, 

                              bitmap.image_size(), 

                              cudaMemcpyDeviceToHost ) );

One of the last wrinkles in the difference of implementation comes in the imple-
mentation of kernel().

__global__ void kernel( unsigned char *ptr ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = blockIdx.x;

    int y = blockIdx.y;

    int offset = x + y * gridDim.x;

    // now calculate the value at that position

    int juliaValue = julia( x, y );

    ptr[offset*4 + 0] = 255 * juliaValue;

    ptr[offset*4 + 1] = 0;

    ptr[offset*4 + 2] = 0;

    ptr[offset*4 + 3] = 255;

}

First, we need kernel() to be declared as a __global__ function so it runs 
on the device but can be called from the host. Unlike the CPU version, we no 
longer need nested for() loops to generate the pixel indices that get passed 
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to julia(). As with the vector addition example, the CUDA runtime generates 
these indices for us in the variable blockIdx. This works because we declared 
our grid of blocks to have the same dimensions as our image, so we get one block 
for each pair of integers (x,y) between (0,0) and (DIM-1, DIM-1). 

Next, the only additional information we need is a linear offset into our output 
buffer, ptr. This gets computed using another built-in variable, gridDim. This 
variable is a constant across all blocks and simply holds the dimensions of the 
grid that was launched. In this example, it will always be the value (DIM, DIM). 
So, multiplying the row index by the grid width and adding the column index will 
give us a unique index into ptr that ranges from 0 to (DIM*DIM-1).

    int offset = x + y * gridDim.x;

Finally, we examine the actual code that determines whether a point is in or out 
of the Julia Set. This code should look identical to the CPU version, continuing a 
trend we have seen in many examples now.

__device__ int julia( int x, int y ) {

    const float scale = 1.5;

    float jx = scale * (float)(DIM/2 - x)/(DIM/2);

    float jy = scale * (float)(DIM/2 - y)/(DIM/2);

    cuComplex c(-0.8, 0.156);

    cuComplex a(jx, jy);

    int i = 0;

    for (i=0; i<200; i++) {

        a = a * a + c;

        if (a.magnitude2() > 1000)

            return 0;

    }

    return 1;

}
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Again, we define a cuComplex structure that defines a method for storing a 
complex number with single-precision floating-point components. The structure 
also defines addition and multiplication operators as well as a function to return 
the magnitude of the complex value. 

struct cuComplex {

    float   r;

    float   i;

    cuComplex( float a, float b ) : r(a), i(b)  {}

    __device__ float magnitude2( void ) { 

        return r * r + i * i; 

    }

    __device__ cuComplex operator*(const cuComplex& a) { 

        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i); 

    }

    __device__ cuComplex operator+(const cuComplex& a) { 

        return cuComplex(r+a.r, i+a.i); 

    }

};

Notice that we use the same language constructs in CUDA C that we use in our 
CPU version. The one difference is the qualifier __device__, which indicates 
that this code will run on a GPU and not on the host. Recall that because these 
functions are declared as __device__ functions, they will be callable only from 
other __device__ functions or from __global__ functions.

Since we’ve interrupted the code with commentary so frequently, here is the 
entire source listing from start to finish:

#include "../common/book.h"

#include "../common/cpu_bitmap.h"

#define DIM 1000
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struct cuComplex {

    float   r;

    float   i;

    cuComplex( float a, float b ) : r(a), i(b)  {}

    __device__ float magnitude2( void ) {

        return r * r + i * i;

    }

    __device__ cuComplex operator*(const cuComplex& a) {

        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);

    }

    __device__ cuComplex operator+(const cuComplex& a) {

        return cuComplex(r+a.r, i+a.i);

    }

};

__device__ int julia( int x, int y ) {

    const float scale = 1.5;

    float jx = scale * (float)(DIM/2 - x)/(DIM/2);

    float jy = scale * (float)(DIM/2 - y)/(DIM/2);

    cuComplex c(-0.8, 0.156);

    cuComplex a(jx, jy);

    int i = 0;

    for (i=0; i<200; i++) {

        a = a * a + c;

        if (a.magnitude2() > 1000)

            return 0;

    }

    return 1;

}
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__global__ void kernel( unsigned char *ptr ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = blockIdx.x;

    int y = blockIdx.y;

    int offset = x + y * gridDim.x;

    // now calculate the value at that position

    int juliaValue = julia( x, y );

    ptr[offset*4 + 0] = 255 * juliaValue;

    ptr[offset*4 + 1] = 0;

    ptr[offset*4 + 2] = 0;

    ptr[offset*4 + 3] = 255;

}

int main( void ) {

    CPUBitmap bitmap( DIM, DIM );

    unsigned char    *dev_bitmap;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap, 

                               bitmap.image_size() ) );

    dim3    grid(DIM,DIM);

    kernel<<<grid,1>>>( dev_bitmap );

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), dev_bitmap,

                              bitmap.image_size(),

                              cudaMemcpyDeviceToHost ) );

    bitmap.display_and_exit();

    HANDLE_ERROR( cudaFree( dev_bitmap ) );

}

When you run the application, you should see an animating visualization of the 
Julia Set. To convince you that it has earned the title “A Fun Example,” Figure 4.2 
shows a screenshot taken from this application.
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Figure 4.2 A screenshot from the GPU Julia Set application

Chapter Review4.3 
Congratulations, you can now write, compile, and run massively parallel code 
on a graphics processor! You should go brag to your friends. And if they are still 
under the misconception that GPU computing is exotic and difficult to master, 
they will be most impressed. The ease with which you accomplished it will be 
our secret. If they’re people you trust with your secrets, suggest that they buy the 
book, too.

We have so far looked at how to instruct the CUDA runtime to execute multiple 
copies of our program in parallel on what we called blocks. We called the collec-
tion of blocks we launch on the GPU a grid. As the name might imply, a grid can 
be either a one- or two-dimensional collection of blocks. Each copy of the kernel 
can determine which block it is executing with the built-in variable blockIdx. 
Likewise, it can determine the size of the grid by using the built-in variable 
gridDim. Both of these built-in variables proved useful within our kernel to 
calculate the data index for which each block is responsible.
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Chapter 5

thread Cooperation

We have now written our first program using CUDA C as well as have seen how 
to write code that executes in parallel on a GPU. This is an excellent start! But 
arguably one of the most important components to parallel programming is 
the means by which the parallel processing elements cooperate on solving a 
problem. Rare are the problems where every processor can compute results 
and terminate execution without a passing thought as to what the other proces-
sors are doing. For even moderately sophisticated algorithms, we will need the 
parallel copies of our code to communicate and cooperate. So far, we have not 
seen any mechanisms for accomplishing this communication between sections 
of CUDA C code executing in parallel. Fortunately, there is a solution, one that we 
will begin to explore in this chapter.
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Chapter Objectives5.1 
Through the course of this chapter, you will accomplish the following:

You will learn about what CUDA C calls • threads.

You will learn a mechanism for different threads to communicate with each other.• 

You will learn a mechanism to synchronize the parallel execution of different • 
threads.

Splitting Parallel Blocks5.2 
In the previous chapter, we looked at how to launch parallel code on the GPU. We 
did this by instructing the CUDA runtime system on how many parallel copies of 
our kernel to launch. We call these parallel copies blocks. 

The CUDA runtime allows these blocks to be split into threads. Recall that when 
we launched multiple parallel blocks, we changed the first argument in the angle 
brackets from 1 to the number of blocks we wanted to launch. For example, when 
we studied vector addition, we launched a block for each element in the vector of 
size N by calling this:

    add<<<N,1>>>( dev_a, dev_b, dev_c );

Inside the angle brackets, the second parameter actually represents the number 
of threads per block we want the CUDA runtime to create on our behalf. To this 
point, we have only ever launched one thread per block. In the previous example, 
we launched the following:

N blocks x 1 thread/block = N parallel threads

So really, we could have launched N/2 blocks with two threads per block, N/4 
blocks with four threads per block, and so on. Let’s revisit our vector addition 
example armed with this new information about the capabilities of CUDA C.

VECTOR SUMS: REDUX5.2.1 

We endeavor to accomplish the same task as we did in the previous chapter. That 
is, we want to take two input vectors and store their sum in a third output vector. 
However, this time we will use threads instead of blocks to accomplish this. 
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You may be wondering, what is the advantage of using threads rather than 
blocks? Well, for now, there is no advantage worth discussing. But parallel 
threads within a block will have the ability to do things that parallel blocks cannot 
do. So for now, be patient and humor us while we walk through a parallel thread 
version of the parallel block example from the previous chapter.

GPU VECTOR SUMS USING THREADS

We will start by addressing the two changes of note when moving from parallel 
blocks to parallel threads. Our kernel invocation will change from one that 
launches N blocks of one thread apiece:

    add<<<N,1>>>( dev _ a, dev _ b, dev _ c );

to a version that launches N threads, all within one block:

    add<<<1,N>>>( dev _ a, dev _ b, dev _ c );

The only other change arises in the method by which we index our data. 
Previously, within our kernel we indexed the input and output data by block index.

    int tid = blockIdx.x;

The punch line here should not be a surprise. Now that we have only a single 
block, we have to index the data by thread index.

    int tid = threadIdx.x;

These are the only two changes required to move from a parallel block imple-
mentation to a parallel thread implementation. For completeness, here is the 
entire source listing with the changed lines in bold:

#include "../common/book.h"

#define N   10

__global__ void add( int *a, int *b, int *c ) {

    int tid = threadIdx.x;

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}
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int main( void ) {

    int a[N], b[N], c[N];

    int *dev_a, *dev_b, *dev_c;

    // allocate the memory on the GPU

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_c, N * sizeof(int) ) );

   // fill the arrays ‘a’ and ‘b’ on the CPU

    for (int i=0; i<N; i++) {

        a[i] = i;

        b[i] = i * i;

    }

    // copy the arrays ‘a’ and ‘b’ to the GPU

    HANDLE_ERROR( cudaMemcpy( dev_a, 

                              a, 

                              N * sizeof(int), 

                              cudaMemcpyHostToDevice ) );

    HANDLE_ERROR( cudaMemcpy( dev_b, 

                              b, 

                              N * sizeof(int), 

                              cudaMemcpyHostToDevice ) );

    add<<<1,N>>>( dev_a, dev_b, dev_c );

    // copy the array ‘c’ back from the GPU to the CPU

    HANDLE_ERROR( cudaMemcpy( c, 

                              dev_c, 

                              N * sizeof(int), 

                              cudaMemcpyDeviceToHost ) );

    // display the results

    for (int i=0; i<N; i++) {

        printf( “%d + %d = %d\n”, a[i], b[i], c[i] );

    }
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    // free the memory allocated on the GPU

    cudaFree( dev_a );

    cudaFree( dev_b );

    cudaFree( dev_c );

    return 0;

}

Pretty simple stuff, right? In the next section, we’ll see one of the limitations 
of this thread-only approach. And of course, later we’ll see why we would even 
bother splitting blocks into other parallel components.

GPU SUMS OF A LONGER VECTOR

In the previous chapter, we noted that the hardware limits the number of blocks 
in a single launch to 65,535. Similarly, the hardware limits the number of threads 
per block with which we can launch a kernel. Specifically, this number cannot 
exceed the value specified by the maxThreadsPerBlock field of the device 
properties structure we looked at in Chapter 3. For many of the graphics proces-
sors currently available, this limit is 512 threads per block, so how would we use 
a thread-based approach to add two vectors of size greater than 512? We will 
have to use a combination of threads and blocks to accomplish this. 

As before, this will require two changes: We will have to change the index compu-
tation within the kernel, and we will have to change the kernel launch itself. 

Now that we have multiple blocks and threads, the indexing will start to look 
similar to the standard method for converting from a two-dimensional index 
space to a linear space.

    int tid = threadIdx.x + blockIdx.x * blockDim.x;

This assignment uses a new built-in variable, blockDim. This variable is a 
constant for all blocks and stores the number of threads along each dimen-
sion of the block. Since we are using a one-dimensional block, we refer only to 
blockDim.x. If you recall, gridDim stored a similar value, but it stored the 
number of blocks along each dimension of the entire grid. Moreover, gridDim is 
two-dimensional, whereas blockDim is actually three-dimensional. That is, the 
CUDA runtime allows you to launch a two-dimensional grid of blocks where each 
block is a three-dimensional array of threads. Yes, this is a lot of dimensions, and 
it is unlikely you will regularly need the five degrees of indexing freedom afforded 
you, but they are available if so desired.
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Indexing the data in a linear array using the previous assignment actually is quite 
intuitive. If you disagree, it may help to think about your collection of blocks of 
threads spatially, similar to a two-dimensional array of pixels. We depict this 
arrangement in Figure 5.1.

If the threads represent columns and the blocks represent rows, we can get a 
unique index by taking the product of the block index with the number of threads 
in each block and adding the thread index within the block. This is identical to the 
method we used to linearize the two-dimensional image index in the Julia Set 
example.

    int offset = x + y * DIM;

Here, DIM is the block dimension (measured in threads), y is the block index,  
and x is the thread index within the block. Hence, we arrive at the index:  
tid = threadIdx.x + blockIdx.x * blockDim.x.

The other change is to the kernel launch itself. We still need N parallel threads to 
launch, but we want them to launch across multiple blocks so we do not hit the 
512-thread limitation imposed upon us. One solution is to arbitrarily set the block 
size to some fixed number of threads; for this example, let’s use 128 threads per 
block. Then we can just launch N/128 blocks to get our total of N threads running. 

The wrinkle here is that N/128 is an integer division. This implies that if N were 
127, N/128 would be zero, and we will not actually compute anything if we launch 

Thread 0 Thread 1 Thread 2 Thread 3

Thread 0 Thread 1 Thread 2 Thread 3

Thread 0 Thread 1 Thread 2 Thread 3

Thread 0

Block 0

Block 1

Block 2

Block 3 Thread 1 Thread 2 Thread 3

Figure 5.1 A two-dimensional arrangement of a collection of blocks and threads 
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zero threads. In fact, we will launch too few threads whenever N is not an exact 
multiple of 128. This is bad. We actually want this division to round up. 

There is a common trick to accomplish this in integer division without calling 
ceil(). We actually compute (N+127)/128 instead of N/128. Either you can 
take our word that this will compute the smallest multiple of 128 greater than or 
equal to N or you can take a moment now to convince yourself of this fact.

We have chosen 128 threads per block and therefore use the following kernel 
launch:

    add<<< (N+127)/128, 128 >>>( dev _ a, dev _ b, dev _ c );

Because of our change to the division that ensures we launch enough threads, we 
will actually now launch too many threads when N is not an exact multiple of 128. 
But there is a simple remedy to this problem, and our kernel already takes care of 
it. We have to check whether a thread’s offset is actually between 0 and N before 
we use it to access our input and output arrays:

    if (tid < N)

        c[tid] = a[tid] + b[tid];

Thus, when our index overshoots the end of our array, as will always happen 
when we launch a nonmultiple of 128, we automatically refrain from performing 
the calculation. More important, we refrain from reading and writing memory off 
the end of our array.

GPU SUMS OF ARBITRARILY LONG VECTORS

We were not completely forthcoming when we first discussed launching parallel 
blocks on a GPU. In addition to the limitation on thread count, there is also a 
hardware limitation on the number of blocks (albeit much greater than the thread 
limitation). As we’ve mentioned previously, neither dimension of a grid of blocks 
may exceed 65,535. 

So, this raises a problem with our current vector addition implementation. If 
we launch N/128 blocks to add our vectors, we will hit launch failures when 
our vectors exceed 65,535 * 128 = 8,388,480 elements. This seems like a large 
number, but with current memory capacities between 1GB and 4GB, the high-end 
graphics processors can hold orders of magnitude more data than vectors with 
8 million elements.
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Fortunately, the solution to this issue is extremely simple. We first make a change 
to our kernel.

__global__ void add( int *a, int *b, int *c ) {

    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    while (tid < N) {

        c[tid] = a[tid] + b[tid];

        tid += blockDim.x * gridDim.x;

    }

}

This looks remarkably like our original version of vector addition! In fact, compare 
it to the following CPU implementation from the previous chapter:

void add( int *a, int *b, int *c ) {

    int tid = 0;    // this is CPU zero, so we start at zero

    while (tid < N) {

        c[tid] = a[tid] + b[tid];

        tid += 1;   // we have one CPU, so we increment by one

    }

}

Here we also used a while() loop to iterate through the data. Recall that we 
claimed that rather than incrementing the array index by 1, a multi-CPU or multi-
core version could increment by the number of processors we wanted to use. We 
will now use that same principle in the GPU version.

In the GPU implementation, we consider the number of parallel threads launched 
to be the number of processors. Although the actual GPU may have fewer (or 
more) processing units than this, we think of each thread as logically executing 
in parallel and then allow the hardware to schedule the actual execution. 
Decoupling the parallelization from the actual method of hardware execution is 
one of burdens that CUDA C lifts off a software developer’s shoulders. This should 
come as a relief, considering current NVIDIA hardware can ship with anywhere 
between 8 and 480 arithmetic units per chip!

Now that we understand the principle behind this implementation, we just need 
to understand how we determine the initial index value for each parallel thread 
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and how we determine the increment. We want each parallel thread to start on 
a different data index, so we just need to take our thread and block indexes and 
linearize them as we saw in the “GPU Sums of a Longer Vector” section. Each 
thread will start at an index given by the following:

    int tid = threadIdx.x + blockIdx.x * blockDim.x;

After each thread finishes its work at the current index, we need to increment 
each of them by the total number of threads running in the grid. This is simply the 
number of threads per block multiplied by the number of blocks in the grid, or 
blockDim.x * gridDim.x. Hence, the increment step is as follows:

    tid += blockDim.x * gridDim.x;

We are almost there! The only remaining piece is to fix the launch 
itself. If you remember, we took this detour because the launch 
add<<<(N+127)/128,128>>>( dev_a, dev_b, dev_c ) will fail when 
(N+127)/128 is greater than 65,535. To ensure we never launch too many blocks, 
we will just fix the number of blocks to some reasonably small value. Since we like 
copying and pasting so much, we will use 128 blocks, each with 128 threads. 

    add<<<128,128>>>( dev _ a, dev _ b, dev _ c );

You should feel free to adjust these values however you see fit, provided that 
your values remain within the limits we’ve discussed. Later in the book, we will 
discuss the potential performance implications of these choices, but for now it 
suffices to choose 128 threads per block and 128 blocks. Now we can add vectors 
of arbitrary length, limited only by the amount of RAM we have on our GPU. Here 
is the entire source listing:

#include "../common/book.h"

#define N (33 * 1024)

__global__ void add( int *a, int *b, int *c ) {

    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    while (tid < N) {

        c[tid] = a[tid] + b[tid];

        tid += blockDim.x * gridDim.x;

    }

}
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int main( void ) {

    int a[N], b[N], c[N];

    int *dev_a, *dev_b, *dev_c;

    // allocate the memory on the GPU

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_c, N * sizeof(int) ) );

    // fill the arrays ‘a’ and ‘b’ on the CPU

    for (int i=0; i<N; i++) {

        a[i] = i;

        b[i] = i * i;

    }

    // copy the arrays 'a' and 'b' to the GPU

    HANDLE_ERROR( cudaMemcpy( dev_a, 

                              a, 

                              N * sizeof(int), 

                              cudaMemcpyHostToDevice ) );

    HANDLE_ERROR( cudaMemcpy( dev_b, 

                              b, 

                              N * sizeof(int), 

                              cudaMemcpyHostToDevice ) );

    add<<<128,128>>>( dev_a, dev_b, dev_c );

    // copy the array 'c' back from the GPU to the CPU

    HANDLE_ERROR( cudaMemcpy( c, 

                              dev_c, 

                              N * sizeof(int), 

                              cudaMemcpyDeviceToHost ) );

    // verify that the GPU did the work we requested

    bool success = true;

    for (int i=0; i<N; i++) {

        if ((a[i] + b[i]) != c[i]) {

            printf( “Error:  %d + %d != %d\n”, a[i], b[i], c[i] );

            success = false;
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       }

    }

    if (success)    printf( "We did it!\n" );

    // free the memory allocated on the GPU

    cudaFree( dev_a );

    cudaFree( dev_b );

    cudaFree( dev_c );

    return 0;

}

GPU RIPPLE USING THREADS5.2.2 

As with the previous chapter, we will reward your patience with vector addition by 
presenting a more fun example that demonstrates some of the techniques we’ve 
been using. We will again use our GPU computing power to generate pictures 
procedurally. But to make things even more interesting, this time we will animate 
them. But don’t worry, we’ve packaged all the unrelated animation code into 
helper functions so you won’t have to master any graphics or animation.

struct DataBlock {

    unsigned char   *dev_bitmap;

    CPUAnimBitmap  *bitmap;

};

// clean up memory allocated on the GPU

void cleanup( DataBlock *d ) {

    cudaFree( d->dev_bitmap );

}

int main( void ) {

    DataBlock   data;

    CPUAnimBitmap  bitmap( DIM, DIM, &data );

    data.bitmap = &bitmap;
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    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_bitmap,

                              bitmap.image_size() ) );

    bitmap.anim_and_exit( (void (*)(void*,int))generate_frame,

                            (void (*)(void*))cleanup );

}

Most of the complexity of main() is hidden in the helper class 
CPUAnimBitmap. You will notice that we again have a pattern of doing a 
 cudaMalloc(), executing device code that uses the allocated memory, and 
then cleaning up with  cudaFree(). This should be old hat to you by now.

In this example, we have slightly convoluted the means by which we accomplish 
the middle step, “executing device code that uses the allocated memory.” We 
pass the anim_and_exit() method a function pointer to generate_frame(). 
This function will be called by the class every time it wants to generate a new 
frame of the animation. 

void generate_frame( DataBlock *d, int ticks ) {

    dim3    blocks(DIM/16,DIM/16);

    dim3    threads(16,16);

    kernel<<<blocks,threads>>>( d->dev_bitmap, ticks );

    HANDLE_ERROR( cudaMemcpy( d->bitmap->get_ptr(),

                              d->dev_bitmap,

                              d->bitmap->image_size(),

                              cudaMemcpyDeviceToHost ) );

}

Although this function consists only of four lines, they all involve important 
CUDA C concepts. First, we declare two two-dimensional variables, blocks 
and threads. As our naming convention makes painfully obvious, the variable 
blocks represents the number of parallel blocks we will launch in our grid. The 
variable threads represents the number of threads we will launch per block. 
Because we are generating an image, we use two-dimensional indexing so that 
each thread will have a unique (x,y) index that we can easily put into correspon-
dence with a pixel in the output image. We have chosen to use blocks that consist 
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of a 16 x 16 array of threads. If the image has DIM x DIM pixels, we need to launch 
DIM/16 x DIM/16 blocks to get one thread per pixel. Figure 5.2 shows how this 
block and thread configuration would look in a (ridiculously) small, 48-pixel-wide, 
32-pixel-high image.

Block (0,0)

Block (0,1)

Block (1,0)

Block (1,1)

Thread
(0.0)

Thread
(0,1)

Thread
(0,15)

Thread
(1,0)

Thread
(1,1)

Thread
(1,15)

Thread
(2,0)

Thread
(2,1)

Thread
(2,15)

Thread
(15,0)

Thread
(15,1)

Thread
(15,15)

Block (2,0)

Block (2,1)

Figure 5.2 A 2D hierarchy of blocks and threads that could be used to process a 
48 x 32 pixel image using one thread per pixel
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If you have done any multithreaded CPU programming, you may be wondering 
why we would launch so many threads. For example, to render a full high-
 definition animation at 1920 x 1080, this method would create more than 2 million 
threads. Although we routinely create and schedule this many threads on a GPU, 
one would not dream of creating this many threads on a CPU. Because CPU 
thread management and scheduling must be done in software, it simply cannot 
scale to the number of threads that a GPU can. Because we can simply create a 
thread for each data element we want to process, parallel programming on a GPU 
can be far simpler than on a CPU.

After declaring the variables that hold the dimensions of our launch, we simply 
launch the kernel that will compute our pixel values.

    kernel<<< blocks,threads>>>( d->dev _ bitmap, ticks );

The kernel will need two pieces of information that we pass as parameters. First, 
it needs a pointer to device memory that holds the output pixels. This is a global 
variable that had its memory allocated in main(). But the variable is “global” 
only for host code, so we need to pass it as a parameter to ensure that the CUDA 
runtime will make it available for our device code.

Second, our kernel will need to know the current animation time so it can 
generate the correct frame. The current time, ticks, is passed to the 
generate_frame() function from the infrastructure code in CPUAnimBitmap, 
so we can simply pass this on to our kernel.

And now, here’s the kernel code itself:

__global__ void kernel( unsigned char *ptr, int ticks ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = threadIdx.x + blockIdx.x * blockDim.x;

    int y = threadIdx.y + blockIdx.y * blockDim.y;

    int offset = x + y * blockDim.x * gridDim.x;

    // now calculate the value at that position

    float fx = x - DIM/2;

    float fy = y - DIM/2;

    float d = sqrtf( fx * fx + fy * fy );
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    unsigned char grey = (unsigned char)(128.0f + 127.0f *

                                         cos(d/10.0f - ticks/7.0f) /

                                         (d/10.0f + 1.0f));    

    ptr[offset*4 + 0] = grey;

    ptr[offset*4 + 1] = grey;

    ptr[offset*4 + 2] = grey;

    ptr[offset*4 + 3] = 255;

}

The first three are the most important lines in the kernel.

    int x = threadIdx.x + blockIdx.x * blockDim.x;

    int y = threadIdx.y + blockIdx.y * blockDim.y;

    int offset = x + y * blockDim.x * gridDim.x;

In these lines, each thread takes its index within its block as well as the index 
of its block within the grid, and it translates this into a unique (x,y) index 
within the image. So when the thread at index (3, 5) in block (12, 8) begins 
executing, it knows that there are 12 entire blocks to the left of it and 8 entire 
blocks above it. Within its block, the thread at (3, 5) has three threads to the 
left and five above it. Because there are 16 threads per block, this means the 
thread in question has the following:

3 threads + 12 blocks * 16 threads/block = 195 threads to the left of it

5 threads + 8 blocks * 16 threads/block = 128 threads above it

This computation is identical to the computation of x and y in the first two lines 
and is how we map the thread and block indices to image coordinates. Then we 
simply linearize these x and y values to get an offset into the output buffer. Again, 
this is identical to what we did in the “GPU Sums of a Longer Vector” and “GPU 
Sums of Arbitrarily Long Vectors” sections.

    int offset = x + y * blockDim.x * gridDim.x;

Since we know which (x,y) pixel in the image the thread should compute and 
we know the time at which it needs to compute this value, we can compute any 
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function of (x,y,t) and store this value in the output buffer. In this case, the 
function produces a time-varying sinusoidal “ripple.” 

    float fx = x - DIM/2;

    float fy = y - DIM/2;

    float d = sqrtf( fx * fx + fy * fy );

    unsigned char grey = (unsigned char)(128.0f + 127.0f *

                                         cos(d/10.0f - ticks/7.0f) /

                                         (d/10.0f + 1.0f));

We recommend that you not get too hung up on the computation of grey. It’s 
essentially just a 2D function of time that makes a nice rippling effect when it’s 
animated. A screenshot of one frame should look something like Figure 5.3.

Figure 5.3 A screenshot from the GPU ripple example
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Shared Memory and 5.3 
Synchronization
So far, the motivation for splitting blocks into threads was simply one of working 
around hardware limitations to the number of blocks we can have in flight. This 
is fairly weak motivation, because this could easily be done behind the scenes by 
the CUDA runtime. Fortunately, there are other reasons one might want to split a 
block into threads.

CUDA C makes available a region of memory that we call shared memory. This 
region of memory brings along with it another extension to the C language akin 
to __device__ and __global__. As a programmer, you can modify your vari-
able declarations with the CUDA C keyword __shared__ to make this variable 
resident in shared memory. But what’s the point?

We’re glad you asked. The CUDA C compiler treats variables in shared memory 
differently than typical variables. It creates a copy of the variable for each block 
that you launch on the GPU. Every thread in that block shares the memory, but 
threads cannot see or modify the copy of this variable that is seen within other 
blocks. This provides an excellent means by which threads within a block can 
communicate and collaborate on computations. Furthermore, shared memory 
buffers reside physically on the GPU as opposed to residing in off-chip DRAM. 
Because of this, the latency to access shared memory tends to be far lower 
than typical buffers, making shared memory effective as a per-block, software-
managed cache or scratchpad.

The prospect of communication between threads should excite you. It excites us, 
too. But nothing in life is free, and interthread communication is no exception. 
If we expect to communicate between threads, we also need a mechanism for 
synchronizing between threads. For example, if thread A writes a value to shared 
memory and we want thread B to do something with this value, we can’t have 
thread B start its work until we know the write from thread A is complete. Without 
synchronization, we have created a race condition where the correctness of the 
execution results depends on the nondeterministic details of the hardware. 

Let’s take a look at an example that uses these features.



THREAD COOPERATION

76

dot Product5.3.1 

Congratulations! We have graduated from vector addition and will now take a look 
at vector dot products (sometimes called an inner product). We will quickly review 
what a dot product is, just in case you are unfamiliar with vector mathematics (or 
it has been a few years). The computation consists of two steps. First, we multiply 
corresponding elements of the two input vectors. This is very similar to vector 
addition but utilizes multiplication instead of addition. However, instead of then 
storing these values to a third, output vector, we sum them all to produce a single 
scalar output.

For example, if we take the dot product of two four-element vectors, we would get 
Equation 5.1.

Equation 5.1 

Perhaps the algorithm we tend to use is becoming obvious. We can do the first 
step exactly how we did vector addition. Each thread multiplies a pair of corre-
sponding entries, and then every thread moves on to its next pair. Because the 
result needs to be the sum of all these pairwise products, each thread keeps 
a running sum of the pairs it has added. Just like in the addition example, the 
threads increment their indices by the total number of threads to ensure we don’t 
miss any elements and don’t multiply a pair twice. Here is the first step of the dot 
product routine:

#include "../common/book.h"

#define imin(a,b) (a<b?a:b)

const int N = 33 * 1024;

const int threadsPerBlock = 256;

__global__ void dot( float *a, float *b, float *c ) {

    __shared__ float cache[threadsPerBlock];

    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    int cacheIndex = threadIdx.x;
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    float   temp = 0;

    while (tid < N) {

        temp += a[tid] * b[tid];

        tid += blockDim.x * gridDim.x;

    }

    

    // set the cache values

    cache[cacheIndex] = temp;

As you can see, we have declared a buffer of shared memory named cache. This 
buffer will be used to store each thread’s running sum. Soon we will see why we 
do this, but for now we will simply examine the mechanics by which we accom-
plish it. It is trivial to declare a variable to reside in shared memory, and it is 
identical to the means by which you declare a variable as static or volatile 
in standard C:

    __shared__ float cache[threadsPerBlock];

We declare the array of size threadsPerBlock so each thread in the block 
has a place to store its temporary result. Recall that when we have allocated 
memory globally, we allocated enough for every thread that runs the kernel, or 
 threadsPerBlock times the total number of blocks. But since the compiler 
will create a copy of the shared variables for each block, we need to allocate only 
enough memory such that each thread in the block has an entry.

After allocating the shared memory, we compute our data indices much like we 
have in the past:

    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    int cacheIndex = threadIdx.x;

The computation for the variable tid should look familiar by now; we are just 
combining the block and thread indices to get a global offset into our input arrays. 
The offset into our shared memory cache is simply our thread index. Again, we 
don’t need to incorporate our block index into this offset because each block has 
its own private copy of this shared memory. 
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Finally, we clear our shared memory buffer so that later we will be able to blindly 
sum the entire array without worrying whether a particular entry has valid data 
stored there:

    // set the cache values

    cache[cacheIndex] = temp;

It will be possible that not every entry will be used if the size of the input vectors 
is not a multiple of the number of threads per block. In this case, the last block 
will have some threads that do nothing and therefore do not write values.

Each thread computes a running sum of the product of corresponding entries in a 
and b. After reaching the end of the array, each thread stores its temporary sum 
into the shared buffer.

    float   temp = 0;

    while (tid < N) {

        temp += a[tid] * b[tid];

        tid += blockDim.x * gridDim.x;

    }

    

    // set the cache values

    cache[cacheIndex] = temp;

At this point in the algorithm, we need to sum all the temporary values we’ve 
placed in the cache. To do this, we will need some of the threads to read the 
values that have been stored there. However, as we mentioned, this is a poten-
tially dangerous operation. We need a method to guarantee that all of these 
writes to the shared array cache[] complete before anyone tries to read from 
this buffer. Fortunately, such a method exists:

    // synchronize threads in this block

    __syncthreads();

This call guarantees that every thread in the block has completed instructions 
prior to the __syncthreads() before the hardware will execute the next 
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instruction on any thread. This is exactly what we need! We now know that when 
the first thread executes the first instruction after our __syncthreads(), 
every other thread in the block has also finished executing up to the 
__syncthreads().

Now that we have guaranteed that our temporary cache has been filled, we 
can sum the values in it. We call the general process of taking an input array 
and performing some computations that produce a smaller array of results a 
 reduction. Reductions arise often in parallel computing, which leads to the desire 
to give them a name. 

The naïve way to accomplish this reduction would be having one thread iterate 
over the shared memory and calculate a running sum. This will take us time 
proportional to the length of the array. However, since we have hundreds of 
threads available to do our work, we can do this reduction in parallel and take 
time that is proportional to the logarithm of the length of the array. At first, the 
following code will look convoluted; we’ll break it down in a moment.

The general idea is that each thread will add two of the values in cache[] and 
store the result back to cache[]. Since each thread combines two entries into 
one, we complete this step with half as many entries as we started with. In the 
next step, we do the same thing on the remaining half. We continue in this fashion 
for log2(threadsPerBlock) steps until we have the sum of every entry in 
cache[]. For our example, we’re using 256 threads per block, so it takes 8 itera-
tions of this process to reduce the 256 entries in cache[] to a single sum.

The code for this follows:

    // for reductions, threadsPerBlock must be a power of 2

    // because of the following code

    int i = blockDim.x/2;

    while (i != 0) {

        if (cacheIndex < i)

            cache[cacheIndex] += cache[cacheIndex + i];

        __syncthreads();

        i /= 2;

    }
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Figure 5.4 One step of a summation reduction

For the first step, we start with i as half the number of threadsPerBlock. 
We only want the threads with indices less than this value to do any work, so we 
conditionally add two entries of cache[] if the thread’s index is less than i. We 
protect our addition within an if(cacheIndex < i) block. Each thread will 
take the entry at its index in cache[], add it to the entry at its index offset by i, 
and store this sum back to cache[]. 

Suppose there were eight entries in cache[] and, as a result, i had the value 4. 
One step of the reduction would look like Figure 5.4.

After we have completed a step, we have the same restriction we did after 
computing all the pairwise products. Before we can read the values we just stored 
in cache[], we need to ensure that every thread that needs to write to cache[] 
has already done so. The __syncthreads() after the assignment ensures this 
condition is met.

After termination of this while() loop, each block has but a single number 
remaining. This number is sitting in the first entry of cache[] and is the sum 
of every pairwise product the threads in that block computed. We then store this 
single value to global memory and end our kernel:

    if (cacheIndex == 0)

        c[blockIdx.x] = cache[0];

}
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Why do we do this global store only for the thread with cacheIndex == 0? Well, 
since there is only one number that needs writing to global memory, only a single 
thread needs to perform this operation. Conceivably, every thread could perform 
this write and the program would still work, but doing so would create an unnec-
essarily large amount of memory traffic to write a single value. For simplicity, 
we chose the thread with index 0, though you could conceivably have chosen any 
cacheIndex to write cache[0] to global memory. Finally, since each block 
will write exactly one value to the global array c[], we can simply index it by 
blockIdx.

We are left with an array c[], each entry of which contains the sum produced by 
one of the parallel blocks. The last step of the dot product is to sum the entries 
of c[]. Even though the dot product is not fully computed, we exit the kernel and 
return control to the host at this point. But why do we return to the host before 
the computation is complete? 

Previously, we referred to an operation like a dot product as a reduction. Roughly 
speaking, this is because we produce fewer output data elements than we input. 
In the case of a dot product, we always produce exactly one output, regardless 
of the size of our input. It turns out that a massively parallel machine like a GPU 
tends to waste its resources when performing the last steps of a reduction, since 
the size of the data set is so small at that point; it is hard to utilize 480 arithmetic 
units to add 32 numbers! 

For this reason, we return control to the host and let the CPU finish the final step 
of the addition, summing the array c[]. In a larger application, the GPU would 
now be free to start another dot product or work on another large computation. 
However, in this example, we are done with the GPU.

In explaining this example, we broke with tradition and jumped right into the 
actual kernel computation. We hope you will have no trouble understanding the 
body of main() up to the kernel call, since it is overwhelmingly similar to what 
we have shown before.

const int blocksPerGrid =

            imin( 32, (N+threadsPerBlock-1) / threadsPerBlock );

int main( void ) {

    float   *a, *b, c, *partial_c;

    float   *dev_a, *dev_b, *dev_partial_c;
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    // allocate memory on the CPU side

    a = new float[N];

    b = new float[N];

    partial_c = new float[blocksPerGrid];

    // allocate the memory on the GPU

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a,

                              N*sizeof(float) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_b,

                              N*sizeof(float) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_partial_c,

                              blocksPerGrid*sizeof(float) ) );

    // fill in the host memory with data

    for (int i=0; i<N; i++) {

        a[i] = i;

        b[i] = i*2;

    }

    // copy the arrays 'a' and 'b' to the GPU

    HANDLE_ERROR( cudaMemcpy( dev_a, a, N*sizeof(float),

                              cudaMemcpyHostToDevice ) );

    HANDLE_ERROR( cudaMemcpy( dev_b, b, N*sizeof(float),

                              cudaMemcpyHostToDevice ) ); 

    dot<<<blocksPerGrid,threadsPerBlock>>>( dev_a, 

                                            dev_b, 

                                            dev_partial_c );

To avoid you passing out from boredom, we will quickly summarize this code:

Allocate host and device memory for input and output arrays.1. 

Fill input arrays 2. a[] and b[], and then copy these to the device using 
cudaMemcpy().

Call our dot product kernel using some predetermined number of threads 3. 
per block and blocks per grid.
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Despite most of this being commonplace to you now, it is worth examining the 
computation for the number of blocks we launch. We discussed how the dot 
product is a reduction and how each block launched will compute a partial sum. 
The length of this list of partial sums should be something manageably small 
for the CPU yet large enough such that we have enough blocks in flight to keep 
even the fastest GPUs busy. We have chosen 32 blocks, although this is a case 
where you may notice better or worse performance for other choices, especially 
depending on the relative speeds of your CPU and GPU. 

But what if we are given a very short list and 32 blocks of 256 threads apiece 
is too many? If we have N data elements, we need only N threads in order 
to compute our dot product. So in this case, we need the smallest multiple 
of threadsPerBlock that is greater than or equal to N. We have seen this 
once before when we were adding vectors. In this case, we get the smallest 
multiple of threadsPerBlock that is greater than or equal to N by computing 
(N+(threadsPerBlock-1)) / threadsPerBlock. As you may be able 
to tell, this is actually a fairly common trick in integer math, so it is worth 
digesting this even if you spend most of your time working outside the  
CUDA C realm.

Therefore, the number of blocks we launch should be either 32 or 
(N+(threadsPerBlock-1)) / threadsPerBlock, whichever value is 
smaller.

    const int blocksPerGrid =

            imin( 32, (N+threadsPerBlock-1) / threadsPerBlock );

Now it should be clear how we arrive at the code in main(). After the kernel 
finishes, we still have to sum the result. But like the way we copy our input to 
the GPU before we launch a kernel, we need to copy our output back to the CPU 
before we continue working with it. So after the kernel finishes, we copy back the 
list of partial sums and complete the sum on the CPU.

    // copy the array 'c' back from the GPU to the CPU

    HANDLE_ERROR( cudaMemcpy( partial_c, dev_partial_c,

                              blocksPerGrid*sizeof(float),

                              cudaMemcpyDeviceToHost ) );
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    // finish up on the CPU side

    c = 0;

    for (int i=0; i<blocksPerGrid; i++) {

        c += partial_c[i];

    }

Finally, we check our results and clean up the memory we’ve allocated on both 
the CPU and GPU. Checking the results is made easier because we’ve filled the 
inputs with predictable data. If you recall, a[] is filled with the integers from 0 to 
N-1 and b[] is just 2*a[].

    // fill in the host memory with data

    for (int i=0; i<N; i++) {

        a[i] = i;

        b[i] = i*2;

    }

Our dot product should be two times the sum of the squares of the integers 
from 0 to N-1. For the reader who loves discrete mathematics (and what’s not to 
love?!), it will be an amusing diversion to derive the closed-form solution for this 
summation. For those with less patience or interest, we present the closed-form 
here, as well as the rest of the body of main():

    #define sum_squares(x)  (x*(x+1)*(2*x+1)/6)

    printf( "Does GPU value %.6g = %.6g?\n", c,

             2 * sum_squares( (float)(N - 1) ) );

    // free memory on the GPU side

    cudaFree( dev_a );

    cudaFree( dev_b );

    cudaFree( dev_partial_c );

    // free memory on the CPU side

    delete [] a;

    delete [] b;

    delete [] partial_c;

}
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If you found all our explanatory interruptions bothersome, here is the entire 
source listing, sans commentary:

#include "../common/book.h"

#define imin(a,b) (a<b?a:b)

const int N = 33 * 1024;

const int threadsPerBlock = 256;

const int blocksPerGrid =

            imin( 32, (N+threadsPerBlock-1) / threadsPerBlock );

__global__ void dot( float *a, float *b, float *c ) {

    __shared__ float cache[threadsPerBlock];

    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    int cacheIndex = threadIdx.x;

    float   temp = 0;

    while (tid < N) {

        temp += a[tid] * b[tid];

        tid += blockDim.x * gridDim.x;

    }

    // set the cache values

    cache[cacheIndex] = temp;

    

    // synchronize threads in this block

    __syncthreads();

    // for reductions, threadsPerBlock must be a power of 2

    // because of the following code

    int i = blockDim.x/2;

    while (i != 0) {

        if (cacheIndex < i)

            cache[cacheIndex] += cache[cacheIndex + i];

        __syncthreads();

        i /= 2;

    }
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    if (cacheIndex == 0)

        c[blockIdx.x] = cache[0];

}

int main( void ) {

    float   *a, *b, c, *partial_c;

    float   *dev_a, *dev_b, *dev_partial_c;

    // allocate memory on the CPU side

    a = (float*)malloc( N*sizeof(float) );

    b = (float*)malloc( N*sizeof(float) );

    partial_c = (float*)malloc( blocksPerGrid*sizeof(float) );

    // allocate the memory on the GPU

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a,

                              N*sizeof(float) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_b,

                              N*sizeof(float) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_partial_c,

                              blocksPerGrid*sizeof(float) ) );

    // fill in the host memory with data

    for (int i=0; i<N; i++) {

        a[i] = i;

        b[i] = i*2;

    }

    // copy the arrays ‘a’ and ‘b’ to the GPU

    HANDLE_ERROR( cudaMemcpy( dev_a, a, N*sizeof(float),

                              cudaMemcpyHostToDevice ) );

    HANDLE_ERROR( cudaMemcpy( dev_b, b, N*sizeof(float),

                              cudaMemcpyHostToDevice ) ); 
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    dot<<<blocksPerGrid,threadsPerBlock>>>( dev_a, dev_b,

                                            dev_partial_c );

    // copy the array 'c' back from the GPU to the CPU

    HANDLE_ERROR( cudaMemcpy( partial_c, dev_partial_c,

                              blocksPerGrid*sizeof(float),

                              cudaMemcpyDeviceToHost ) );

   // finish up on the CPU side

    c = 0;

    for (int i=0; i<blocksPerGrid; i++) {

        c += partial_c[i];

    }

    #define sum_squares(x)  (x*(x+1)*(2*x+1)/6)

    printf( “Does GPU value %.6g = %.6g?\n”, c,

             2 * sum_squares( (float)(N - 1) ) );

    // free memory on the GPU side

    cudaFree( dev_a );

    cudaFree( dev_b );

    cudaFree( dev_partial_c );

    // free memory on the CPU side

    free( a );

    free( b );

    free( partial_c );

}

DOT PRODUCT OPTIMIZED (INCORRECTLY)5.3.1 

We quickly glossed over the second __syncthreads() in the dot product 
example. Now we will take a closer look at it as well as examining an attempt 
to improve it. If you recall, we needed the second __syncthreads() because 
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we update our shared memory variable cache[] and need these updates to be 
visible to every thread on the next iteration through the loop.

    int i = blockDim.x/2;

    while (i != 0) {

        if (cacheIndex < i)

            cache[cacheIndex] += cache[cacheIndex + i];

        __syncthreads();

        i /= 2;

    }

Observe that we update our shared memory buffer cache[] only if cacheIndex 
is less than i. Since cacheIndex is really just threadIdx.x, this means that 
only some of the threads are updating entries in the shared memory cache. Since 
we are using __syncthreads only to ensure that these updates have taken 
place before proceeding, it stands to reason that we might see a speed improve-
ment only if we wait for the threads that are actually writing to shared memory. 
We do this by moving the synchronization call inside the if() block:

    int i = blockDim.x/2;

    while (i != 0) {

        if (cacheIndex < i) {

            cache[cacheIndex] += cache[cacheIndex + i];

            __syncthreads();

        }

        i /= 2;

    }

Although this was a valiant effort at optimization, it will not actually work. In fact, 
the situation is worse than that. This change to the kernel will actually cause the 
GPU to stop responding, forcing you to kill your program. But what could have 
gone so catastrophically wrong with such a seemingly innocuous change?

To answer this question, it helps to imagine every thread in the block marching 
through the code one line at a time. At each instruction in the program, every 
thread executes the same instruction, but each can operate on different data. 
But what happens when the instruction that every thread is supposed to execute 
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is inside a conditional block like an if()? Obviously not every thread should 
execute that instruction, right? For example, consider a kernel that contains the 
following fragment of code that intends for odd-indexed threads to update the 
value of some variable:

    int myVar = 0;

    if( threadIdx.x % 2 )

        myVar = threadIdx.x;

In the previous example, when the threads arrive at the line in bold, only the 
threads with odd indices will execute it since the threads with even indices do not 
satisfy the condition if( threadIdx.x % 2 ). The even-numbered threads 
simply do nothing while the odd threads execute this instruction. When some of 
the threads need to execute an instruction while others don’t, this situation is 
known as thread divergence. Under normal circumstances, divergent branches 
simply result in some threads remaining idle, while the other threads actually 
execute the instructions in the branch. 

But in the case of __syncthreads(), the result is somewhat tragic. The  
CUDA Architecture guarantees that no thread will advance to an instruction 
beyond the __syncthreads() until every thread in the block has executed the 
__syncthreads(). Unfortunately, if the __syncthreads() sits in a divergent 
branch, some of the threads will never reach the __syncthreads(). Therefore, 
because of the guarantee that no instruction after a __syncthreads() can be 
executed before every thread has executed it, the hardware simply continues to 
wait for these threads. And waits. And waits. Forever.

This is the situation in the dot product example when we move the  
__syncthreads() call inside the if() block. Any thread with cacheIndex 
greater than or equal to i will never execute the __syncthreads(). This effec-
tively hangs the processor because it results in the GPU waiting for something 
that will never happen.

        if (cacheIndex < i) {

            cache[cacheIndex] += cache[cacheIndex + i];

            __syncthreads();

        }
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The moral of this story is that __syncthreads() is a powerful mechanism 
for ensuring that your massively parallel application still computes the correct 
results. But because of this potential for unintended consequences, we still need 
to take care when using it.

SHARED MEMORY BITMAP5.3.2 

We have looked at examples that use shared memory and employed  
__syncthreads() to ensure that data is ready before we continue.  
In the name of speed, you may be tempted to live dangerously and omit  
the __syncthreads(). We will now look at a graphical example that requires 
__syncthreads() for correctness. We will show you screenshots of the 
intended output and of the output when run without __syncthreads(). It  
won’t be pretty.

The body of main() is identical to the GPU Julia Set example, although this time 
we launch multiple threads per block:

#include "cuda.h"

#include "../common/book.h"

#include "../common/cpu_bitmap.h"

#define DIM 1024

#define PI 3.1415926535897932f

int main( void ) {

    CPUBitmap bitmap( DIM, DIM );

    unsigned char    *dev_bitmap;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap,

                              bitmap.image_size() ) );

    dim3    grids(DIM/16,DIM/16);

    dim3    threads(16,16);

    kernel<<<grids,threads>>>( dev_bitmap );
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    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), dev_bitmap,

                              bitmap.image_size(),

                              cudaMemcpyDeviceToHost ) );

    bitmap.display_and_exit();

    cudaFree( dev_bitmap );

}

As with the Julia Set example, each thread will be computing a pixel value for a 
single output location. The first thing that each thread does is compute its x and 
y location in the output image. This computation is identical to the tid computa-
tion in the vector addition example, although we compute it in two dimensions 
this time:

__global__ void kernel( unsigned char *ptr ) {

    // map from threadIdx/blockIdx to pixel position

    int x = threadIdx.x + blockIdx.x * blockDim.x;

    int y = threadIdx.y + blockIdx.y * blockDim.y;

    int offset = x + y * blockDim.x * gridDim.x;

Since we will be using a shared memory buffer to cache our computations, we 
declare one such that each thread in our 16 x 16 block has an entry.

    __shared__ float    shared[16][16];

Then, each thread computes a value to be stored into this buffer.

    // now calculate the value at that position

    const float period = 128.0f;

    shared[threadIdx.x][threadIdx.y] =

            255 * (sinf(x*2.0f*PI/ period) + 1.0f) *

                  (sinf(y*2.0f*PI/ period) + 1.0f) / 4.0f;
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And lastly, we store these values back out to the pixel, reversing the order of x 
and y:

    ptr[offset*4 + 0] = 0;

    ptr[offset*4 + 1] = shared[15-threadIdx.x][15-threadIdx.y];

    ptr[offset*4 + 2] = 0;

    ptr[offset*4 + 3] = 255;

}

Granted, these computations are somewhat arbitrary. We’ve simply come up with 
something that will draw a grid of green spherical blobs. So after compiling and 
running this kernel, we output an image like the one in Figure 5.5.

What happened here? As you may have guessed from the way we set up this 
example, we’re missing an important synchronization point. When a thread 
stores the computed value in shared[][] to the pixel, it is possible that the 
thread responsible for writing that value to shared[][] has not finished 
writing it yet. The only way to guarantee that this does not happen is by using  
__syncthreads(). Thus, the result is a corrupted picture of green blobs. 

Figure 5.5 A screenshot rendered without proper synchronization
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Although this may not be the end of the world, your application might be 
computing more important values. 

Instead, we need to add a synchronization point between the write to shared 
memory and the subsequent read from it.

    shared[threadIdx.x][threadIdx.y] =

            255 * (sinf(x*2.0f*PI/ period) + 1.0f) *

                  (sinf(y*2.0f*PI/ period) + 1.0f) / 4.0f;

    __syncthreads();

    ptr[offset*4 + 0] = 0;

    ptr[offset*4 + 1] = shared[15-threadIdx.x][15-threadIdx.y];

    ptr[offset*4 + 2] = 0;

    ptr[offset*4 + 3] = 255;

}

With this __syncthreads() in place, we then get a far more predictable (and 
aesthetically pleasing) result, as shown in Figure 5.6.

Figure 5.6 A screenshot after adding the correct synchronization
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Chapter Review5.4 
We know how blocks can be subdivided into smaller parallel execution units 
known as threads. We revisited the vector addition example of the previous 
chapter to see how to perform addition of arbitrarily long vectors. We also showed 
an example of reduction and how we use shared memory and synchronization to 
accomplish this. In fact, this example showed how the GPU and CPU can collabo-
rate on computing results. Finally, we showed how perilous it can be to an appli-
cation when we neglect the need for synchronization.

You have learned most of the basics of CUDA C as well as some of the ways it 
resembles standard C and a lot of the important ways it differs from standard 
C. This would be an excellent time to consider some of the problems you have 
encountered and which ones might lend themselves to parallel implementations 
with CUDA C. As we progress, we will look at some of the other features we can 
use to accomplish tasks on the GPU, as well as some of the more advanced API 
features that CUDA provides to us.
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Chapter 6

Constant Memory 
and Events

We hope you have learned much about writing code that executes on the GPU. 
You should know how to spawn parallel blocks to execute your kernels, and you 
should know how to further split these blocks into parallel threads. You have also 
seen ways to enable communication and synchronization between these threads. 
But since the book is not over yet, you may have guessed that CUDA C has even 
more features that might be useful to you. 

This chapter will introduce you to a couple of these more advanced features. 
Specifically, there exist ways in which you can exploit special regions of memory 
on your GPU in order to accelerate your applications. In this chapter, we will 
discuss one of these regions of memory: constant memory. In addition, because 
we are looking at our first method for enhancing the performance of your CUDA C 
applications, you will also learn how to measure the performance of your applica-
tions using CUDA events. From these measurements, you will be able to quantify 
the gain (or loss!) from any enhancements you make.
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Chapter Objectives6.1 
Through the course of this chapter, you will accomplish the following:

You will learn about using constant memory with CUDA C.• 

You will learn about the performance characteristics of constant memory.• 

You will learn how to use CUDA events to measure application performance.• 

Constant Memory6.2 
Previously, we discussed how modern GPUs are equipped with enormous 
amounts of arithmetic processing power. In fact, the computational advantage 
graphics processors have over CPUs helped precipitate the initial interest in using 
graphics processors for general-purpose computing. With hundreds of arithmetic 
units on the GPU, often the bottleneck is not the arithmetic throughput of the 
chip but rather the memory bandwidth of the chip. There are so many ALUs on 
graphics processors that sometimes we just can’t keep the input coming to them 
fast enough to sustain such high rates of computation. So, it is worth investigating 
means by which we can reduce the amount of memory traffic required for a given 
problem.

We have seen CUDA C programs that have used both global and shared memory 
so far. However, the language makes available another kind of memory known 
as constant memory. As the name may indicate, we use constant memory for 
data that will not change over the course of a kernel execution. NVIDIA hardware 
provides 64KB of constant memory that it treats differently than it treats standard 
global memory. In some situations, using constant memory rather than global 
memory will reduce the required memory bandwidth. 

rAy trAcInG IntroductIon6.2.1 

We will look at one way of exploiting constant memory in the context of a simple 
ray tracing application. First, we will give you some background in the major 
concepts behind ray tracing. If you are already comfortable with the concepts 
behind ray tracing, you can skip to the “Ray Tracing on the GPU” section. 
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Simply put, ray tracing is one way of producing a two-dimensional image of a 
scene consisting of three-dimensional objects. But isn’t this what GPUs were 
originally designed for? How is this different from what OpenGL or DirectX 
do when you play your favorite game? Well, GPUs do indeed solve this same 
problem, but they use a technique known as rasterization. There are many excel-
lent books on rasterization, so we will not endeavor to explain the differences 
here. It suffices to say that they are completely different methods that solve the 
same problem.

So, how does ray tracing produce an image of a three-dimensional scene? The 
idea is simple: We choose a spot in our scene to place an imaginary camera. This 
simplified digital camera contains a light sensor, so to produce an image, we 
need to determine what light would hit that sensor. Each pixel of the resulting 
image should be the same color and intensity of the ray of light that hits that spot 
sensor. 

Since light incident at any point on the sensor can come from any place in our 
scene, it turns out it’s easier to work backward. That is, rather than trying to 
figure out what light ray hits the pixel in question, what if we imagine shooting a 
ray from the pixel and into the scene? In this way, each pixel behaves something 
like an eye that is “looking” into the scene. Figure 6.1 illustrates these rays being 
cast out of each pixel and into the scene.

Image
Scene Object

View Ray

Figure 6.1 A simple ray tracing scheme



constAnt memory And events

98

We figure out what color is seen by each pixel by tracing a ray from the pixel in 
question through the scene until it hits one of our objects. We then say that the 
pixel would “see” this object and can assign its color based on the color of the 
object it sees. Most of the computation required by ray tracing is in the computa-
tion of these intersections of the ray with the objects in the scene. 

Moreover, in more complex ray tracing models, shiny objects in the scene can 
reflect rays, and translucent objects can refract the rays of light. This creates 
secondary rays, tertiary rays, and so on. In fact, this is one of the attractive 
features of ray tracing; it is very simple to get a basic ray tracer working, but we 
can build models of more complex phenomenon into the ray tracer in order to 
produce more realistic images.

RAY TRACING ON THE GPU6.2.2 

Since APIs such as OpenGL and DirectX are not designed to allow ray-traced 
rendering, we will have to use CUDA C to implement our basic ray tracer. Our 
ray tracer will be extraordinarily simple so that we can concentrate on the use 
of constant memory, so if you were expecting code that could form the basis of 
a full-blown production renderer, you will be disappointed. Our basic ray tracer 
will only support scenes of spheres, and the camera is restricted to the z-axis, 
facing the origin. Moreover, we will not support any lighting of the scene to avoid 
the complications of secondary rays. Instead of computing lighting effects, we will 
simply assign each sphere a color and then shade them with some precomputed 
function if they are visible. 

So, what will the ray tracer do? It will fire a ray from each pixel and keep track of 
which rays hit which spheres. It will also track the depth of each of these hits. In 
the case where a ray passes through multiple spheres, only the sphere closest 
to the camera can be seen. In essence, our “ray tracer” is not doing much more 
than hiding surfaces that cannot be seen by the camera.

We will model our spheres with a data structure that stores the sphere’s center 
coordinate of (x, y, z), its radius, and its color of (r, b, g).
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#define INF     2e10f

struct Sphere {

    float   r,b,g;

    float   radius;

    float   x,y,z;

    __device__ float hit( float ox, float oy, float *n ) {

        float dx = ox - x;

        float dy = oy - y;

        if (dx*dx + dy*dy < radius*radius) {

            float dz = sqrtf( radius*radius - dx*dx - dy*dy );

            *n = dz / sqrtf( radius * radius );

            return dz + z;

        }

        return -INF;

    }

};

You will also notice that the structure has a method called hit( float ox, 
float oy, float *n ). Given a ray shot from the pixel at (ox, oy), this 
method computes whether the ray intersects the sphere. If the ray does intersect 
the sphere, the method computes the distance from the camera where the ray 
hits the sphere. We need this information for the reason mentioned before: In the 
event that the ray hits more than one sphere, only the closest sphere can actually 
be seen.

Our main() routine follows roughly the same sequence as our previous image-
generating examples.

#include "cuda.h"

#include "../common/book.h"

#include "../common/cpu_bitmap.h"

#define rnd( x ) (x * rand() / RAND_MAX)

#define SPHERES 20

Sphere  *s;
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int main( void ) {

    // capture the start time

    cudaEvent_t     start, stop;

    HANDLE_ERROR( cudaEventCreate( &start ) );

    HANDLE_ERROR( cudaEventCreate( &stop ) );

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );

    CPUBitmap bitmap( DIM, DIM );

    unsigned char   *dev_bitmap;

    // allocate memory on the GPU for the output bitmap

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap,

                              bitmap.image_size() ) );

    // allocate memory for the Sphere dataset

    HANDLE_ERROR( cudaMalloc( (void**)&s,

                              sizeof(Sphere) * SPHERES ) );

We allocate memory for our input data, which is an array of spheres that compose 
our scene. Since we need this data on the GPU but are generating it with the CPU, 
we have to do both a cudaMalloc() and a malloc()to allocate memory on 
both the GPU and the CPU. We also allocate a bitmap image that we will fill with 
output pixel data as we ray trace our spheres on the GPU. 

After allocating memory for input and output, we randomly generate the center 
coordinate, color, and radius for our spheres:

    // allocate temp memory, initialize it, copy to

    // memory on the GPU, and then free our temp memory

    Sphere *temp_s = (Sphere*)malloc( sizeof(Sphere) * SPHERES );

    for (int i=0; i<SPHERES; i++) {

        temp_s[i].r = rnd( 1.0f );

        temp_s[i].g = rnd( 1.0f );

        temp_s[i].b = rnd( 1.0f );

        temp_s[i].x = rnd( 1000.0f ) - 500;

        temp_s[i].y = rnd( 1000.0f ) - 500;

        temp_s[i].z = rnd( 1000.0f ) - 500;

        temp_s[i].radius = rnd( 100.0f ) + 20;

    }
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The program currently generates a random array of 20 spheres, but this quantity 
is specified in a #define and can be adjusted accordingly. 

We copy this array of spheres to the GPU using cudaMemcpy()and then free the 
temporary buffer.

    HANDLE_ERROR( cudaMemcpy( s, temp_s,

                                sizeof(Sphere) * SPHERES,

                                cudaMemcpyHostToDevice ) );

    free( temp_s );

Now that our input is on the GPU and we have allocated space for the output, we 
are ready to launch our kernel.

    // generate a bitmap from our sphere data

    dim3    grids(DIM/16,DIM/16);

    dim3    threads(16,16);

    kernel<<<grids,threads>>>( dev_bitmap );

We will examine the kernel itself in a moment, but for now you should take it on 
faith that it ray traces the scene and generates pixel data for the input scene of 
spheres. Finally, we copy the output image back from the GPU and display it. It 
should go without saying that we free all allocated memory that hasn’t already 
been freed.

    // copy our bitmap back from the GPU for display

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), dev_bitmap,

                              bitmap.image_size(),

                              cudaMemcpyDeviceToHost ) );

    bitmap.display_and_exit();

    // free our memory

    cudaFree( dev_bitmap );

    cudaFree( s );

}
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All of this should be commonplace to you now. So, how do we do the actual ray 
tracing? Because we have settled on a very simple ray tracing model, our kernel 
will be very easy to understand. Each thread is generating one pixel for our output 
image, so we start in the usual manner by computing the x- and y-coordinates 
for the thread as well as the linearized offset into our output buffer. We will 
also shift our (x,y) image coordinates by DIM/2 so that the z-axis runs through 
the center of the image.

__global__ void kernel( unsigned char *ptr ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = threadIdx.x + blockIdx.x * blockDim.x;

    int y = threadIdx.y + blockIdx.y * blockDim.y;

    int offset = x + y * blockDim.x * gridDim.x;

    float   ox = (x - DIM/2);

    float   oy = (y - DIM/2);

Since each ray needs to check each sphere for intersection, we will now iterate 
through the array of spheres, checking each for a hit.

    float   r=0, g=0, b=0;

    float   maxz = -INF;

    for(int i=0; i<SPHERES; i++) {

        float   n;

        float   t = s[i].hit( ox, oy, &n );

        if (t > maxz) {

            float fscale = n;

            r = s[i].r * fscale;

            g = s[i].g * fscale;

            b = s[i].b * fscale;

        }

    } 

Clearly, the majority of the interesting computation lies in the for() loop. We 
iterate through each of the input spheres and call its hit() method to deter-
mine whether the ray from our pixel “sees” the sphere. If the ray hits the current 
sphere, we determine whether the hit is closer to the camera than the last sphere 
we hit. If it is closer, we store this depth as our new closest sphere. In addition, we 
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store the color associated with this sphere so that when the loop has terminated, 
the thread knows the color of the sphere that is closest to the camera. Since this 
is the color that the ray from our pixel “sees,” we conclude that this is the color of 
the pixel and store this value in our output image buffer.

After every sphere has been checked for intersection, we can store the current 
color into the output image.

    ptr[offset*4 + 0] = (int)(r * 255);

    ptr[offset*4 + 1] = (int)(g * 255);

    ptr[offset*4 + 2] = (int)(b * 255);

    ptr[offset*4 + 3] = 255;

}

Note that if no spheres have been hit, the color that we store will be whatever 
color we initialized the variables r, b, and g to. In this case, we set r, b, and g 
to zero so the background will be black. You can change these values to render 
a different color background. Figure 6.2 shows an example of what the output 
should look like when rendered with 20 spheres and a black background.

Figure 6.2 A screenshot from the ray tracing example 
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Since we randomly generated the sphere positions, colors, and sizes, we advise 
you not to panic if your output doesn’t match this image identically. 

RAY TRACING WITH CONSTANT MEMORY6.2.3 

You may have noticed that we never mentioned constant memory in the ray 
tracing example. Now it’s time to improve this example using the benefits of 
constant memory. Since we cannot modify constant memory, we clearly can’t 
use it for the output image data. And this example has only one input, the array 
of spheres, so it should be pretty obvious what data we will store in constant 
memory.

The mechanism for declaring memory constant is identical to the one we used for 
declaring a buffer as shared memory. Instead of declaring our array like this:

    Sphere  *s;

we add the modifier __constant__ before it:

    __constant__ Sphere s[SPHERES];

Notice that in the original example, we declared a pointer and then used 
 cudaMalloc() to allocate GPU memory for it. When we changed it to constant 
memory, we also changed the declaration to statically allocate the space in 
constant memory. We no longer need to worry about calling cudaMalloc() or 
cudaFree() for our array of spheres, but we do need to commit to a size for this 
array at compile-time. For many applications, this is an acceptable trade-off for 
the performance benefits of constant memory. We will talk about these benefits 
momentarily, but first we will look at how the use of constant memory changes 
our main() routine:

int main( void ) {

    CPUBitmap bitmap( DIM, DIM );

    unsigned char   *dev_bitmap;

    // allocate memory on the GPU for the output bitmap

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap,

                              bitmap.image_size() ) );
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    // allocate temp memory, initialize it, copy to constant

    // memory on the GPU, and then free our temp memory

    Sphere *temp_s = (Sphere*)malloc( sizeof(Sphere) * SPHERES );

    for (int i=0; i<SPHERES; i++) {

        temp_s[i].r = rnd( 1.0f );

        temp_s[i].g = rnd( 1.0f );

        temp_s[i].b = rnd( 1.0f );

        temp_s[i].x = rnd( 1000.0f ) - 500;

        temp_s[i].y = rnd( 1000.0f ) - 500;

        temp_s[i].z = rnd( 1000.0f ) - 500;

        temp_s[i].radius = rnd( 100.0f ) + 20;

    }

    HANDLE_ERROR( cudaMemcpyToSymbol( s, temp_s, 

                                      sizeof(Sphere) * SPHERES) );

    free( temp_s );

    // generate a bitmap from our sphere data

    dim3    grids(DIM/16,DIM/16);

    dim3    threads(16,16);

    kernel<<<grids,threads>>>( dev_bitmap );

    // copy our bitmap back from the GPU for display

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), dev_bitmap,

                              bitmap.image_size(),

                              cudaMemcpyDeviceToHost ) );

    bitmap.display_and_exit();

    // free our memory

    cudaFree( dev_bitmap );

}

Largely, this is identical to the previous implementation of main(). As we 
mentioned previously, we no longer need the call to cudaMalloc() to allocate 
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space for our array of spheres. The other change has been highlighted in the 
listing:

    HANDLE_ERROR( cudaMemcpyToSymbol( s, temp_s, 

                                sizeof(Sphere) * SPHERES ) );

We use this special version of cudaMemcpy() when we copy from host 
memory to constant memory on the GPU. The only differences between 
 cudaMemcpyToSymbol() and cudaMemcpy() using  cudaMemcpyHostToDevice 
are that cudaMemcpyToSymbol() copies to constant memory and 
cudaMemcpy() copies to global memory.

Outside the __constant__ modifier and the two changes to main(), the 
versions with and without constant memory are identical.

PERFORMANCE WITH CONSTANT MEMORY6.2.4 

Declaring memory as __constant__ constrains our usage to be read-only. In 
taking on this constraint, we expect to get something in return. As we previously 
mentioned, reading from constant memory can conserve memory bandwidth 
when compared to reading the same data from global memory. There are two 
reasons why reading from the 64KB of constant memory can save bandwidth over 
standard reads of global memory:

A single read from constant memory can be broadcast to other “nearby” • 
threads, effectively saving up to 15 reads.

Constant memory is cached, so consecutive reads of the same address will not • 
incur any additional memory traffic.

What do we mean by the word nearby? To answer this question, we will need to 
explain the concept of a warp. For those readers who are more familiar with Star 
Trek than with weaving, a warp in this context has nothing to do with the speed 
of travel through space. In the world of weaving, a warp refers to the group 
of threads being woven together into fabric. In the CUDA Architecture, a warp 
refers to a collection of 32 threads that are “woven together” and get executed in 
lockstep. At every line in your program, each thread in a warp executes the same 
instruction on different data. 
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When it comes to handling constant memory, NVIDIA hardware can broadcast 
a single memory read to each half-warp. A half-warp—not nearly as creatively 
named as a warp—is a group of 16 threads: half of a 32-thread warp. If every 
thread in a half-warp requests data from the same address in constant memory, 
your GPU will generate only a single read request and subsequently broadcast 
the data to every thread. If you are reading a lot of data from constant memory, 
you will generate only 1/16 (roughly 6 percent) of the memory traffic as you would 
when using global memory. 

But the savings don’t stop at a 94 percent reduction in bandwidth when 
reading constant memory! Because we have committed to leaving the memory 
unchanged, the hardware can aggressively cache the constant data on the GPU. 
So after the first read from an address in constant memory, other half-warps 
requesting the same address, and therefore hitting the constant cache, will 
generate no additional memory traffic. 

In the case of our ray tracer, every thread in the launch reads the data corre-
sponding to the first sphere so the thread can test its ray for intersection. After 
we modify our application to store the spheres in constant memory, the hard-
ware needs to make only a single request for this data. After caching the data, 
every other thread avoids generating memory traffic as a result of one of the two 
constant memory benefits:

It receives the data in a half-warp broadcast.• 

It retrieves the data from the constant memory cache.• 

Unfortunately, there can potentially be a downside to performance when using 
constant memory. The half-warp broadcast feature is in actuality a double-edged 
sword. Although it can dramatically accelerate performance when all 16 threads 
are reading the same address, it actually slows performance to a crawl when all 
16 threads read different addresses. 

The trade-off to allowing the broadcast of a single read to 16 threads is that the 
16 threads are allowed to place only a single read request at a time. For example, 
if all 16 threads in a half-warp need different data from constant memory, the 
16 different reads get serialized, effectively taking 16 times the amount of time 
to place the request. If they were reading from conventional global memory, the 
request could be issued at the same time. In this case, reading from constant 
memory would probably be slower than using global memory.
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Measuring Performance with Events6.3 
Fully aware that there may be either positive or negative implications, you have 
changed your ray tracer to use constant memory. How do you determine how this 
has impacted the performance of your program? One of the simplest metrics 
involves answering this simple question: Which version takes less time to finish? 
We could use one of the CPU or operating system timers, but this will include 
latency and variation from any number of sources (operating system thread 
scheduling, availability of high-precision CPU timers, and so on). Furthermore, 
while the GPU kernel runs, we may be asynchronously performing computation 
on the host. The only way to time these host computations is using the CPU or 
operating system timing mechanism. So to measure the time a GPU spends on a 
task, we will use the CUDA event API.

An event in CUDA is essentially a GPU time stamp that is recorded at a user-
 specified point in time. Since the GPU itself is recording the time stamp, it 
eliminates a lot of the problems we might encounter when trying to time GPU 
execution with CPU timers. The API is relatively easy to use, since taking a time 
stamp consists of just two steps: creating an event and subsequently recording 
an event. For example, at the beginning of some sequence of code, we instruct 
the CUDA runtime to make a record of the current time. We do so by creating and 
then recording the event:

cudaEvent_t start;

cudaEventCreate(&start);

cudaEventRecord( start, 0 );

You will notice that when we instruct the runtime to record the event start, we 
also pass it a second argument. In the previous example, this argument is 0. The 
exact nature of this argument is unimportant for our purposes right now, so we 
intend to leave it mysteriously unexplained rather than open a new can of worms. 
If your curiosity is killing you, we intend to discuss this when we talk about 
streams.

To time a block of code, we will want to create both a start event and a stop event. 
We will have the CUDA runtime record when we start tell it to do some other work 
on the GPU and then tell it to record when we’ve stopped:
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cudaEvent_t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord( start, 0 );

// do some work on the GPU

cudaEventRecord( stop, 0 );

Unfortunately, there is still a problem with timing GPU code in this way. The fix will 
require only one line of code but will require some explanation. The trickiest part of 
using events arises as a consequence of the fact that some of the calls we make in 
CUDA C are actually asynchronous. For example, when we launched the kernel in 
our ray tracer, the GPU begins executing our code, but the CPU continues executing 
the next line of our program before the GPU finishes. This is excellent from a 
performance standpoint because it means we can be computing something on the 
GPU and CPU at the same time, but conceptually it makes timing tricky.

You should imagine calls to cudaEventRecord() as an instruction to record 
the current time being placed into the GPU’s pending queue of work. As a result, 
our event won’t actually be recorded until the GPU finishes everything prior to the 
call to cudaEventRecord(). In terms of having our stop event measure the 
correct time, this is precisely what we want. But we cannot safely read the value 
of the stop event until the GPU has completed its prior work and recorded the 
stop event. Fortunately, we have a way to instruct the CPU to synchronize on an 
event, the event API function cudaEventSynchronize():

cudaEvent_t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord( start, 0 );

// do some work on the GPU

cudaEventRecord( stop, 0 );

cudaEventSynchronize( stop );

Now, we have instructed the runtime to block further instruction until the GPU 
has reached the stop event. When the call to cudaEventSynchronize() 
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returns, we know that all GPU work before the stop event has completed, so it 
is safe to read the time stamp recorded in stop. It is worth noting that because 
CUDA events get implemented directly on the GPU, they are unsuitable for timing 
mixtures of device and host code. That is, you will get unreliable results if you 
attempt to use CUDA events to time more than kernel executions and memory 
copies involving the device.

MEASURING RAY TRACER PERFORMANCE6.3.1 

To time our ray tracer, we will need to create a start and stop event, just as we did 
when learning about events. The following is a timing-enabled version of the ray 
tracer that does not use constant memory:

int main( void ) {

    // capture the start time

    cudaEvent_t     start, stop;

    HANDLE_ERROR( cudaEventCreate( &start ) );

    HANDLE_ERROR( cudaEventCreate( &stop ) );

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );

    CPUBitmap bitmap( DIM, DIM );

    unsigned char   *dev_bitmap;

    // allocate memory on the GPU for the output bitmap

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap,

                              bitmap.image_size() ) );

    // allocate memory for the Sphere dataset

    HANDLE_ERROR( cudaMalloc( (void**)&s,

                              sizeof(Sphere) * SPHERES ) );

    // allocate temp memory, initialize it, copy to

    // memory on the GPU, and then free our temp memory

    Sphere *temp_s = (Sphere*)malloc( sizeof(Sphere) * SPHERES );

    for (int i=0; i<SPHERES; i++) {

        temp_s[i].r = rnd( 1.0f );

        temp_s[i].g = rnd( 1.0f );

        temp_s[i].b = rnd( 1.0f );

        temp_s[i].x = rnd( 1000.0f ) - 500;
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        temp_s[i].y = rnd( 1000.0f ) - 500;

        temp_s[i].z = rnd( 1000.0f ) - 500;

        temp_s[i].radius = rnd( 100.0f ) + 20;

    }

    HANDLE_ERROR( cudaMemcpy( s, temp_s,

                                sizeof(Sphere) * SPHERES,

                                cudaMemcpyHostToDevice ) );

    free( temp_s );

    // generate a bitmap from our sphere data

    dim3    grids(DIM/16,DIM/16);

    dim3    threads(16,16);

    kernel<<<grids,threads>>>( s, dev_bitmap );

    // copy our bitmap back from the GPU for display

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), dev_bitmap,

                              bitmap.image_size(),

                              cudaMemcpyDeviceToHost ) );

    // get stop time, and display the timing results

    HANDLE_ERROR( cudaEventRecord( stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( stop ) );

    float   elapsedTime;

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        start, stop ) );

    printf( "Time to generate:  %3.1f ms\n", elapsedTime );

    HANDLE_ERROR( cudaEventDestroy( start ) );

    HANDLE_ERROR( cudaEventDestroy( stop ) );

    // display

    bitmap.display_and_exit();

    // free our memory

    cudaFree( dev_bitmap );

    cudaFree( s );

}
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Notice that we have thrown two additional functions into the mix, the calls 
to cudaEventElapsedTime() and cudaEventDestroy(). The function 
cudaEventElapsedTime() is a utility that computes the elapsed time between 
two previously recorded events. The time in milliseconds elapsed between the 
two events is returned in the first argument, the address of a floating-point 
variable.

The call to cudaEventDestroy() needs to be made when we’re finished 
using an event created with cudaEventCreate(). This is identical to calling 
free() on memory previously allocated with malloc(), so we needn’t 
stress how important it is to match every cudaEventCreate() with a 
cudaEventDestroy().

We can instrument the ray tracer that does use constant memory in the same 
fashion:

int main( void ) {

    // capture the start time

    cudaEvent_t     start, stop;

    HANDLE_ERROR( cudaEventCreate( &start ) );

    HANDLE_ERROR( cudaEventCreate( &stop ) );

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );

    CPUBitmap bitmap( DIM, DIM );

    unsigned char   *dev_bitmap;

    // allocate memory on the GPU for the output bitmap

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap,

                              bitmap.image_size() ) );

    // allocate temp memory, initialize it, copy to constant

    // memory on the GPU, and then free our temp memory

   Sphere *temp_s = (Sphere*)malloc( sizeof(Sphere) * SPHERES );

    for (int i=0; i<SPHERES; i++) {

        temp_s[i].r = rnd( 1.0f );

        temp_s[i].g = rnd( 1.0f );

        temp_s[i].b = rnd( 1.0f );

        temp_s[i].x = rnd( 1000.0f ) - 500;
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       temp_s[i].y = rnd( 1000.0f ) - 500;

       temp_s[i].z = rnd( 1000.0f ) - 500;

       temp_s[i].radius = rnd( 100.0f ) + 20;

    }

    HANDLE_ERROR( cudaMemcpyToSymbol( s, temp_s, 

                                      sizeof(Sphere) * SPHERES) );

    free( temp_s );

    // generate a bitmap from our sphere data

    dim3    grids(DIM/16,DIM/16);

    dim3    threads(16,16);

    kernel<<<grids,threads>>>( dev_bitmap );

    // copy our bitmap back from the GPU for display

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), dev_bitmap,

                              bitmap.image_size(),

                              cudaMemcpyDeviceToHost ) );

    // get stop time, and display the timing results

    HANDLE_ERROR( cudaEventRecord( stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( stop ) );

    float   elapsedTime;

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        start, stop ) );

    printf( "Time to generate:  %3.1f ms\n", elapsedTime );

    HANDLE_ERROR( cudaEventDestroy( start ) );

    HANDLE_ERROR( cudaEventDestroy( stop ) );

    // display

    bitmap.display_and_exit();

    // free our memory

    cudaFree( dev_bitmap );

}
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Now when we run our two versions of the ray tracer, we can compare the time it 
takes to complete the GPU work. This will tell us at a high level whether intro-
ducing constant memory has improved the performance of our application or 
worsened it. Fortunately, in this case, performance is improved dramatically 
by using constant memory. Our experiments on a GeForce GTX 280 show the 
constant memory ray tracer performing up to 50 percent faster than the version 
that uses global memory. On a different GPU, your mileage might vary, although 
the ray tracer that uses constant memory should always be at least as fast as the 
version without it.

Chapter Review6.4 
In addition to the global and shared memory we explored in previous chapters, 
NVIDIA hardware makes other types of memory available for our use. Constant 
memory comes with additional constraints over standard global memory, but 
in some cases, subjecting ourselves to these constraints can yield additional 
performance. Specifically, we can see additional performance when threads in a 
warp need access to the same read-only data. Using constant memory for data 
with this access pattern can conserve bandwidth both because of the capacity to 
broadcast reads across a half-warp and because of the presence of a constant 
memory cache on chip. Memory bandwidth bottlenecks a wide class of algo-
rithms, so having mechanisms to ameliorate this situation can prove incredibly 
useful.

We also learned how to use CUDA events to request the runtime to record time 
stamps at specific points during GPU execution. We saw how to synchronize the 
CPU with the GPU on one of these events and then how to compute the time 
elapsed between two events. In doing so, we built up a method to compare the 
running time between two different methods for ray tracing spheres, concluding 
that, for the application at hand, using constant memory gained us a significant 
amount of performance.
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Chapter 7

texture Memory

When we looked at constant memory, we saw how exploiting special memory 
spaces under the right circumstances can dramatically accelerate applications. 
We also learned how to measure these performance gains in order to make 
informed decisions about performance choices. In this chapter, we will learn 
about how to allocate and use texture memory. Like constant memory, texture 
memory is another variety of read-only memory that can improve performance 
and reduce memory traffic when reads have certain access patterns. Although 
texture memory was originally designed for traditional graphics applications, it 
can also be used quite effectively in some GPU computing applications. 
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Chapter Objectives7.1 
Through the course of this chapter, you will accomplish the following:

You will learn about the performance characteristics of texture memory.• 

You will learn how to use one-dimensional texture memory with CUDA C.• 

You will learn how to use two-dimensional texture memory with CUDA C.• 

Texture Memory Overview7.2 
If you read the introduction to this chapter, the secret is already out: There is 
yet another type of read-only memory that is available for use in your programs 
written in CUDA C. Readers familiar with the workings of graphics hardware will 
not be surprised, but the GPU’s sophisticated texture memory may also be used 
for general-purpose computing. Although NVIDIA designed the texture units for 
the classical OpenGL and DirectX rendering pipelines, texture memory has some 
properties that make it extremely useful for computing. 

Like constant memory, texture memory is cached on chip, so in some situations it 
will provide higher effective bandwidth by reducing memory requests to off-chip 
DRAM. Specifically, texture caches are designed for graphics applications where 
memory access patterns exhibit a great deal of spatial locality. In a computing 
application, this roughly implies that a thread is likely to read from an address 
“near” the address that nearby threads read, as shown in Figure 7.1.

Thread 0

Thread 1

Thread 2

Thread 3

Figure 7.1 A mapping of threads into a two-dimensional region of memory
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Arithmetically, the four addresses shown are not consecutive, so they would 
not be cached together in a typical CPU caching scheme. But since GPU texture 
caches are designed to accelerate access patterns such as this one, you will see 
an increase in performance in this case when using texture memory instead of 
global memory. In fact, this sort of access pattern is not incredibly uncommon in 
general-purpose computing, as we shall see.

Simulating Heat Transfer 7.3 
Physical simulations can be among the most computationally challenging prob-
lems to solve. Fundamentally, there is often a trade-off between accuracy and 
computational complexity. As a result, computer simulations have become more 
and more important in recent years, thanks in large part to the increased accu-
racy possible as a consequence of the parallel computing revolution. Since many 
physical simulations can be parallelized quite easily, we will look at a very simple 
simulation model in this example.

SIMPLE HEATING MODEL7.3.1 

To demonstrate a situation where you can effectively employ texture memory, 
we will construct a simple two-dimensional heat transfer simulation. We start 
by assuming that we have some rectangular room that we divide into a grid. 
Inside the grid, we will randomly scatter a handful of “heaters” with various fixed 
temperatures. Figure 7.2 shows an example of what this room might look like.

Figure 7.2 A room with “heaters” of various temperature
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Figure 7.3 Heat dissipating from warm cells into cold cells

Given a rectangular grid and configuration of heaters, we are looking to simu-
late what happens to the temperature in every grid cell as time progresses. For 
simplicity, cells with heaters in them always remain a constant temperature. 
At every step in time, we will assume that heat “flows” between a cell and its 
neighbors. If a cell’s neighbor is warmer than it is, the warmer neighbor will tend 
to warm it up. Conversely, if a cell has a neighbor cooler than it is, it will cool off. 
Qualitatively, Figure 7.3 represents this flow of heat.

In our heat transfer model, we will compute the new temperature in a grid cell 
as a sum of the differences between its temperature and the temperatures of its 
neighbor, or, essentially, an update equation as shown in Equation 7.1.

Equation 7.1

In the equation for updating a cell’s temperature, the constant k simply repre-
sents the rate at which heat flows through the simulation. A large value of k will 
drive the system to a constant temperature quickly, while a small value will allow 
the solution to retain large temperature gradients longer. Since we consider only 
four neighbors (top, bottom, left, right) and k and TOLD remain constant in the 
equation, this update becomes like the one shown in Equation 7.2.

Equation 7.2

Like with the ray tracing example in the previous chapter, this model is not 
intended to be close to what might be used in industry (in fact, it is not really 
even an approximation of something physically accurate). We have simplified 
this model immensely in order to draw attention to the techniques at hand. With 
this in mind, let’s take a look at how the update given by Equation 7.2 can be 
computed on the GPU.



SIMULATING HEAT TRANSFER 

119

7.3 SIMULATING HEAT TRANSFER 

comPutInG temPerAture uPdAtes7.3.2 

We will cover the specifics of each step in a moment, but at a high level, our 
update process proceeds as follows:

Given some grid of input temperatures, copy the temperature of cells 1. 
with heaters to this grid. This will overwrite any previously computed 
temperatures in these cells, thereby enforcing our restriction that “heating 
cells” remain at a constant temperature. This copy gets performed in 
copy_const_kernel().

Given the input temperature grid, compute the output temperatures based on 2. 
the update in Equation 7.2. This update gets performed in blend_kernel().

Swap the input and output buffers in preparation of the next time step. The 3. 
output temperature grid computed in step 2 will become the input temperature 
grid that we start with in step 1 when simulating the next time step.

Before beginning the simulation, we assume we have generated a grid of 
constants. Most of the entries in this grid are zero, but some entries contain 
nonzero temperatures that represent heaters at fixed temperatures. This buffer 
of constants will not change over the course of the simulation and gets read at 
each time step.

Because of the way we are modeling our heat transfer, we start with the output 
grid from the previous time step. Then, according to step 1, we copy the tempera-
tures of the cells with heaters into this output grid, overwriting any previously 
computed temperatures. We do this because we have assumed that the tempera-
ture of these heater cells remains constant. We perform this copy of the constant 
grid onto the input grid with the following kernel:

__global__ void copy_const_kernel( float *iptr,

                                   const float *cptr ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = threadIdx.x + blockIdx.x * blockDim.x;

    int y = threadIdx.y + blockIdx.y * blockDim.y;

    int offset = x + y * blockDim.x * gridDim.x;

    if (cptr[offset] != 0)  iptr[offset] = cptr[offset];    

}
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The first three lines should look familiar. The first two lines convert a thread’s 
threadIdx and blockIdx into an x- and a y-coordinate. The third line 
computes a linear offset into our constant and input buffers. The highlighted 
line performs the copy of the heater temperature in cptr[] to the input grid in 
iptr[]. Notice that the copy is performed only if the cell in the constant grid is 
nonzero. We do this to preserve any values that were computed in the previous 
time step within cells that do not contain heaters. Cells with heaters will have 
nonzero entries in cptr[] and will therefore have their temperatures preserved 
from step to step thanks to this copy kernel.

Step 2 of the algorithm is the most computationally involved. To perform the 
updates, we can have each thread take responsibility for a single cell in our 
simulation. Each thread will read its cell’s temperature and the temperatures of 
its neighboring cells, perform the previous update computation, and then update 
its temperature with the new value. Much of this kernel resembles techniques 
you’ve used before.

__global__ void blend_kernel( float *outSrc,

                              const float *inSrc ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = threadIdx.x + blockIdx.x * blockDim.x;

    int y = threadIdx.y + blockIdx.y * blockDim.y;

    int offset = x + y * blockDim.x * gridDim.x;

    int left = offset - 1;

    int right = offset + 1;

    if (x == 0)   left++;

    if (x == DIM-1) right--; 

    int top = offset - DIM;

    int bottom = offset + DIM;

    if (y == 0)   top += DIM;

    if (y == DIM-1) bottom -= DIM;

    outSrc[offset] = inSrc[offset] + SPEED * ( inSrc[top] +

                     inSrc[bottom] + inSrc[left] + inSrc[right] -

                     inSrc[offset]*4);

}
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notice that we start exactly as we did for the examples that produced images as 
their output. However, instead of computing the color of a pixel, the threads are 
computing temperatures of simulation grid cells. nevertheless, they start by 
converting their threadIdx and blockIdx into an x, y, and offset. You might 
be able to recite these lines in your sleep by now (although for your sake, we hope 
you aren’t actually reciting them in your sleep).

next, we determine the offsets of our left, right, top, and bottom neighbors so 
that we can read the temperatures of those cells. We will need those values to 
compute the updated temperature in the current cell. the only complication here 
is that we need to adjust indices on the border so that cells around the edges 
do not wrap around. finally, in the highlighted line, we perform the update from 
equation 7.2, adding the old temperature and the scaled differences of that 
temperature and the cell’s neighbors’ temperatures.

7.3.3 animating tHe Simulation

the remainder of the code primarily sets up the grid and then displays an 
animated output of the heat map. We will walk through that code now:

#include "cuda.h"

#include "../common/book.h"

#include "../common/cpu_anim.h"

#define DIM 1024

#define PI 3.1415926535897932f

#define MAX_TEMP 1.0f

#define MIN_TEMP 0.0001f

#define SPEED   0.25f

// globals needed by the update routine

struct DataBlock {

    unsigned char   *output_bitmap;

    float           *dev_inSrc;

    float           *dev_outSrc;

    float           *dev_constSrc;

    CPUAnimBitmap   *bitmap;
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    cudaEvent_t     start, stop;

    float           totalTime;

    float           frames;

};

void anim_gpu( DataBlock *d, int ticks ) {

    HANDLE_ERROR( cudaEventRecord( d->start, 0 ) );

    dim3    blocks(DIM/16,DIM/16);

    dim3    threads(16,16);

    CPUAnimBitmap  *bitmap = d->bitmap;

    for (int i=0; i<90; i++) {

        copy_const_kernel<<<blocks,threads>>>( d->dev_inSrc,

                                               d->dev_constSrc );

        blend_kernel<<<blocks,threads>>>( d->dev_outSrc,

                                          d->dev_inSrc );

        swap( d->dev_inSrc, d->dev_outSrc );

    }

    float_to_color<<<blocks,threads>>>( d->output_bitmap,

                                        d->dev_inSrc );

    HANDLE_ERROR( cudaMemcpy( bitmap->get_ptr(),

                              d->output_bitmap,

                              bitmap->image_size(),

                              cudaMemcpyDeviceToHost ) );

    HANDLE_ERROR( cudaEventRecord( d->stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( d->stop ) );

    float   elapsedTime;

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        d->start, d->stop ) );

    d->totalTime += elapsedTime;

    ++d->frames;

    printf( "Average Time per frame:  %3.1f ms\n",

            d->totalTime/d->frames  );

}
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void anim_exit( DataBlock *d ) {

    cudaFree( d->dev_inSrc );

    cudaFree( d->dev_outSrc );

    cudaFree( d->dev_constSrc );

    HANDLE_ERROR( cudaEventDestroy( d->start ) );

    HANDLE_ERROR( cudaEventDestroy( d->stop ) );

}

We have equipped the code with event-based timing as we did in previous chap-
ter’s ray tracing example. The timing code serves the same purpose as it did 
previously. Since we will endeavor to accelerate the initial implementation, we 
have put in place a mechanism by which we can measure performance and 
convince ourselves that we have succeeded. 

The function anim_gpu() gets called by the animation framework on every 
frame. The arguments to this function are a pointer to a DataBlock and the 
number of ticks of the animation that have elapsed. As with the animation 
examples, we use blocks of 256 threads that we organize into a two-dimensional 
grid of 16 x 16. Each iteration of the for() loop in anim_gpu() computes a 
single time step of the simulation as described by the three-step algorithm 
at the beginning of Section 7.2.2: Computing Temperature Updates. Since the 
DataBlock contains the constant buffer of heaters as well as the output of the 
last time step, it encapsulates the entire state of the animation, and consequently, 
anim_gpu() does not actually need to use the value of ticks anywhere.

You will notice that we have chosen to do 90 time steps per frame. This number 
is not magical but was determined somewhat experimentally as a reasonable 
trade-off between having to download a bitmap image for every time step and 
computing too many time steps per frame, resulting in a jerky animation. If you 
were more concerned with getting the output of each simulation step than you 
were with animating the results in real time, you could change this such that you 
computed only a single step on each frame.

After computing the 90 time steps since the previous frame, anim_gpu() 
is ready to copy a bitmap frame of the current animation back to the CPU. 
Since the for() loop leaves the input and output swapped, we first swap 
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the input and output buffers so that the output actually contains the output 
of the 90th time step. We convert the temperatures to colors using the 
kernel float_to_color() and then copy the resultant image back to 
the CPU with a cudaMemcpy() that specifies the direction of copy as 
 cudaMemcpyDeviceToHost. Finally, to prepare for the next sequence of time 
steps, we swap the output buffer back to the input buffer since it will serve as 
input to the next time step.

int main( void ) {

    DataBlock   data;

    CPUAnimBitmap bitmap( DIM, DIM, &data );

    data.bitmap = &bitmap;

    data.totalTime = 0;

    data.frames = 0;

    HANDLE_ERROR( cudaEventCreate( &data.start ) );

    HANDLE_ERROR( cudaEventCreate( &data.stop ) );

    HANDLE_ERROR( cudaMalloc( (void**)&data.output_bitmap,

                               bitmap.image_size() ) );

    // assume float == 4 chars in size (i.e., rgba)

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_inSrc,

                              bitmap.image_size() ) );

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_outSrc,

                              bitmap.image_size() ) );

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_constSrc,

                              bitmap.image_size() ) );

   float *temp = (float*)malloc( bitmap.image_size() );

   for (int i=0; i<DIM*DIM; i++) {

        temp[i] = 0;

        int x = i % DIM;

        int y = i / DIM;

        if ((x>300) && (x<600) && (y>310) && (y<601))

            temp[i] = MAX_TEMP;

    }
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    temp[DIM*100+100] = (MAX_TEMP + MIN_TEMP)/2;

    temp[DIM*700+100] = MIN_TEMP;

    temp[DIM*300+300] = MIN_TEMP;

    temp[DIM*200+700] = MIN_TEMP;

    for (int y=800; y<900; y++) {

        for (int x=400; x<500; x++) {

            temp[x+y*DIM] = MIN_TEMP;

        }

    }

    HANDLE_ERROR( cudaMemcpy( data.dev_constSrc, temp,

                              bitmap.image_size(),

                              cudaMemcpyHostToDevice ) );    

    for (int y=800; y<DIM; y++) {

        for (int x=0; x<200; x++) {

            temp[x+y*DIM] = MAX_TEMP;

        }

    }

    HANDLE_ERROR( cudaMemcpy( data.dev_inSrc, temp,

                              bitmap.image_size(),

                              cudaMemcpyHostToDevice ) );

    free( temp );

    bitmap.anim_and_exit( (void (*)(void*,int))anim_gpu,

                           (void (*)(void*))anim_exit );

}

figure 7.4 shows an example of what the output might look like. You will notice in 
the image some of the “heaters” that appear to be pixel-sized islands that disrupt 
the continuity of the temperature distribution.

7.3.4 uSing texture memorY

there is a considerable amount of spatial locality in the memory access pattern 
required to perform the temperature update in each step. as we explained 
previously, this is exactly the type of access pattern that gPu texture memory is 
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designed to accelerate. Given that we want to use texture memory, we need to 
learn the mechanics of doing so. 

First, we will need to declare our inputs as texture references. We will use refer-
ences to floating-point textures, since our temperature data is floating-point.

// these exist on the GPU side

texture<float>  texConstSrc;

texture<float>  texIn;

texture<float>  texOut;

The next major difference is that after allocating GPU memory for these 
three buffers, we need to bind the references to the memory buffer using 
 cudaBindTexture(). This basically tells the CUDA runtime two things:

We intend to use the specified buffer as a texture.• 

We intend to use the specified texture reference as the texture’s “name.”• 

Figure 7.4 A screenshot from the animated heat transfer simulation
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After the three allocations in our heat transfer simulation, we bind the three 
allocations to the texture references declared earlier (texConstSrc, texIn, and 
texOut).

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_inSrc,

                              imageSize ) );

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_outSrc,

                              imageSize ) );

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_constSrc,

                              imageSize ) );

    HANDLE_ERROR( cudaBindTexture( NULL, texConstSrc,

                                   data.dev_constSrc,

                                   imageSize ) );

    HANDLE_ERROR( cudaBindTexture( NULL, texIn,

                                   data.dev_inSrc,

                                   imageSize ) );

    HANDLE_ERROR( cudaBindTexture( NULL, texOut,

                                   data.dev_outSrc,

                                   imageSize ) );

At this point, our textures are completely set up, and we’re ready to launch our 
kernel. However, when we’re reading from textures in the kernel, we need to use 
special functions to instruct the GPU to route our requests through the texture unit 
and not through standard global memory. As a result, we can no longer simply use 
square brackets to read from buffers; we need to modify  blend_kernel() to use 
tex1Dfetch() when reading from memory. 

Additionally, there is another difference between using global and texture 
memory that requires us to make another change. Although it looks like a func-
tion, tex1Dfetch() is a compiler intrinsic. And since texture references must 
be declared globally at file scope, we can no longer pass the input and output 
buffers as parameters to blend_kernel() because the compiler needs to know 
at compile time which textures tex1Dfetch() should be sampling. Rather 
than passing pointers to input and output buffers as we previously did, we will 
pass to blend_kernel() a boolean flag dstOut that indicates which buffer to 
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use as input and which to use as output. The changes to blend_kernel() are 
highlighted here:

__global__ void blend_kernel( float *dst,

                              bool dstOut ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = threadIdx.x + blockIdx.x * blockDim.x;

    int y = threadIdx.y + blockIdx.y * blockDim.y;

    int offset = x + y * blockDim.x * gridDim.x;

    int left = offset - 1;

    int right = offset + 1;

    if (x == 0)   left++;

    if (x == DIM-1) right--; 

    int top = offset - DIM;

    int bottom = offset + DIM;

    if (y == 0)   top += DIM;

    if (y == DIM-1) bottom -= DIM;

    float   t, l, c, r, b;

    if (dstOut) {

        t = tex1Dfetch(texIn,top);

        l = tex1Dfetch(texIn,left);

        c = tex1Dfetch(texIn,offset);

        r = tex1Dfetch(texIn,right);

        b = tex1Dfetch(texIn,bottom);

   } else {

        t = tex1Dfetch(texOut,top);

        l = tex1Dfetch(texOut,left);

        c = tex1Dfetch(texOut,offset);

        r = tex1Dfetch(texOut,right);

        b = tex1Dfetch(texOut,bottom);

    }

    dst[offset] = c + SPEED * (t + b + r + l - 4 * c);

}
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Since the copy_const_kernel() kernel reads from our buffer that holds the 
heater positions and temperatures, we will need to make a similar modification 
there in order to read through texture memory instead of global memory:

__global__ void copy_const_kernel( float *iptr ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = threadIdx.x + blockIdx.x * blockDim.x;

    int y = threadIdx.y + blockIdx.y * blockDim.y;

    int offset = x + y * blockDim.x * gridDim.x;

    float c = tex1Dfetch(texConstSrc,offset);

    if (c != 0)

        iptr[offset] = c;

}

Since the signature of blend_kernel() changed to accept a flag that switches 
the buffers between input and output, we need a corresponding change to 
the anim_gpu() routine. Rather than swapping buffers, we set dstOut = 
!dstOut to toggle the flag after each series of calls:

void anim_gpu( DataBlock *d, int ticks ) {

    HANDLE_ERROR( cudaEventRecord( d->start, 0 ) );

    dim3    blocks(DIM/16,DIM/16);

    dim3    threads(16,16);

    CPUAnimBitmap  *bitmap = d->bitmap;

    // since tex is global and bound, we have to use a flag to

    // select which is in/out per iteration

    volatile bool dstOut = true;

    for (int i=0; i<90; i++) {

        float   *in, *out;

        if (dstOut) {

            in  = d->dev_inSrc;

            out = d->dev_outSrc;
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        } else {

            out = d->dev_inSrc;

            in  = d->dev_outSrc;

        }

        copy_const_kernel<<<blocks,threads>>>( in );

        blend_kernel<<<blocks,threads>>>( out, dstOut );

        dstOut = !dstOut;

    }

    float_to_color<<<blocks,threads>>>( d->output_bitmap,

                                        d->dev_inSrc );

    HANDLE_ERROR( cudaMemcpy( bitmap->get_ptr(),

                              d->output_bitmap,

                              bitmap->image_size(),

                              cudaMemcpyDeviceToHost ) );

    HANDLE_ERROR( cudaEventRecord( d->stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( d->stop ) );

    float   elapsedTime;

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        d->start, d->stop ) );

    d->totalTime += elapsedTime;

    ++d->frames;

    printf( "Average Time per frame:  %3.1f ms\n",

            d->totalTime/d->frames  );

}

The final change to our heat transfer routine involves cleaning up at the end of 
the application’s run. Rather than just freeing the global buffers, we also need to 
unbind textures:
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// clean up memory allocated on the GPU

void anim_exit( DataBlock *d ) {

    cudaUnbindTexture( texIn );

    cudaUnbindTexture( texOut );

    cudaUnbindTexture( texConstSrc );

    cudaFree( d->dev_inSrc );

    cudaFree( d->dev_outSrc );

    cudaFree( d->dev_constSrc );

    HANDLE_ERROR( cudaEventDestroy( d->start ) );

    HANDLE_ERROR( cudaEventDestroy( d->stop ) );

}

7.3.5 uSing two-DimenSional texture memory

toward the beginning of this book, we mentioned how some problems have two-
dimensional domains, and therefore it can be convenient to use two-dimensional 
blocks and grids at times. the same is true for texture memory. there are many 
cases when having a two-dimensional memory region can be useful, a claim that 
should come as no surprise to anyone familiar with multidimensional arrays in 
standard C. let’s look at how we can modify our heat transfer application to use 
two-dimensional textures.

first, our texture reference declarations change. if unspecified, texture refer-
ences are one-dimensional by default, so we add a dimensionality argument of 2 
in order to declare two-dimensional textures.

texture<float,2>  texConstSrc;

texture<float,2>  texIn;

texture<float,2>  texOut;

the simplification promised by converting to two-dimensional textures comes in 
the blend_kernel() method. although we need to change our tex1Dfetch() 
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calls to tex2D() calls, we no longer need to use the linearized offset variable 
to compute the set of offsets top, left, right, and bottom. When we switch to 
a two-dimensional texture, we can use x and y directly to address the texture.

Furthermore, we no longer have to worry about bounds overflow when we switch 
to using tex2D(). If one of x or y is less than zero, tex2D() will return the 
value at zero. Likewise, if one of these values is greater than the width, tex2D() 
will return the value at width 1. Note that in our application, this behavior is ideal, 
but it’s possible that other applications would desire other behavior. 

As a result of these simplifications, our kernel cleans up nicely.

__global__ void blend_kernel( float *dst,

                              bool dstOut ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = threadIdx.x + blockIdx.x * blockDim.x;

    int y = threadIdx.y + blockIdx.y * blockDim.y;

    int offset = x + y * blockDim.x * gridDim.x;

    float   t, l, c, r, b;

    if (dstOut) {

        t = tex2D(texIn,x,y-1);

        l = tex2D(texIn,x-1,y);

        c = tex2D(texIn,x,y);

        r = tex2D(texIn,x+1,y);

        b = tex2D(texIn,x,y+1);

    } else {

        t = tex2D(texOut,x,y-1);

        l = tex2D(texOut,x-1,y);

        c = tex2D(texOut,x,y);

        r = tex2D(texOut,x+1,y);

        b = tex2D(texOut,x,y+1);

    }

    dst[offset] = c + SPEED * (t + b + r + l - 4 * c);

}
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Since all of our previous calls to tex1Dfetch() need to be changed to tex2D() 
calls, we make the corresponding change in copy_const_kernel(). Similarly 
to the kernel blend_kernel(), we no longer need to use offset to address 
the texture; we simply use x and y to address the constant source:

__global__ void copy_const_kernel( float *iptr ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = threadIdx.x + blockIdx.x * blockDim.x;

    int y = threadIdx.y + blockIdx.y * blockDim.y;

    int offset = x + y * blockDim.x * gridDim.x;

    float c = tex2D(texConstSrc,x,y);

    if (c != 0)

        iptr[offset] = c;

}

The final change to the one-dimensional texture version of our heat transfer 
simulation is along the same lines as our previous changes. Specifically, in 
main(), we need to change our texture binding calls to instruct the runtime that 
the buffer we plan to use will be treated as a two-dimensional texture, not a one-
dimensional one:

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_inSrc,

                              imageSize ) );

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_outSrc,

                              imageSize ) );

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_constSrc,

                              imageSize ) );

    cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>();

    HANDLE_ERROR( cudaBindTexture2D( NULL, texConstSrc,

                                   data.dev_constSrc,

                                   desc, DIM, DIM,

                                   sizeof(float) * DIM ) );
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    HANDLE_ERROR( cudaBindTexture2D( NULL, texIn,

                                   data.dev_inSrc,

                                   desc, DIM, DIM,

                                   sizeof(float) * DIM ) );

    HANDLE_ERROR( cudaBindTexture2D( NULL, texOut,

                                   data.dev_outSrc,

                                   desc, DIM, DIM,

                                   sizeof(float) * DIM ) );

As with the nontexture and one-dimensional texture versions, we begin 
by allocating storage for our input arrays. We deviate from the one- 
dimensional example because the CUDA runtime requires that we provide a 
 cudaChannelFormatDesc when we bind two-dimensional textures. The 
previous listing includes a declaration of a channel format descriptor. In our 
case, we can accept the default parameters and simply need to specify that 
we require a floating-point descriptor. We then bind the three input buffers as 
two-dimensional textures using cudaBindTexture2D(), the dimensions of 
the texture (DIM x DIM), and the channel format descriptor (desc). The rest of 
main() remains the same.

int main( void ) {

    DataBlock   data;

    CPUAnimBitmap bitmap( DIM, DIM, &data );

    data.bitmap = &bitmap;

    data.totalTime = 0;

    data.frames = 0;

    HANDLE_ERROR( cudaEventCreate( &data.start ) );

    HANDLE_ERROR( cudaEventCreate( &data.stop ) );

    int imageSize = bitmap.image_size();

    HANDLE_ERROR( cudaMalloc( (void**)&data.output_bitmap,

                               imageSize ) );
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    // assume float == 4 chars in size (i.e., rgba)

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_inSrc,

                              imageSize ) );

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_outSrc,

                              imageSize ) );

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_constSrc,

                              imageSize ) );

    cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>();

    HANDLE_ERROR( cudaBindTexture2D( NULL, texConstSrc,

                                   data.dev_constSrc,

                                   desc, DIM, DIM,

                                   sizeof(float) * DIM ) );

    HANDLE_ERROR( cudaBindTexture2D( NULL, texIn,

                                   data.dev_inSrc,

                                   desc, DIM, DIM,

                                   sizeof(float) * DIM ) );

    HANDLE_ERROR( cudaBindTexture2D( NULL, texOut,

                                   data.dev_outSrc,

                                   desc, DIM, DIM,

                                   sizeof(float) * DIM ) );

    // initialize the constant data

    float *temp = (float*)malloc( imageSize );

    for (int i=0; i<DIM*DIM; i++) {

        temp[i] = 0;

        int x = i % DIM;

        int y = i / DIM;

        if ((x>300) && (x<600) && (y>310) && (y<601))

            temp[i] = MAX_TEMP;

    }
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    temp[DIM*100+100] = (MAX_TEMP + MIN_TEMP)/2;

    temp[DIM*700+100] = MIN_TEMP;

    temp[DIM*300+300] = MIN_TEMP;

    temp[DIM*200+700] = MIN_TEMP;

    for (int y=800; y<900; y++) {

        for (int x=400; x<500; x++) {

            temp[x+y*DIM] = MIN_TEMP;

        }

    }

    HANDLE_ERROR( cudaMemcpy( data.dev_constSrc, temp,

                              imageSize,

                              cudaMemcpyHostToDevice ) );    

    // initialize the input data

    for (int y=800; y<DIM; y++) {

        for (int x=0; x<200; x++) {

            temp[x+y*DIM] = MAX_TEMP;

        }

    }

    HANDLE_ERROR( cudaMemcpy( data.dev_inSrc, temp,

                              imageSize,

                              cudaMemcpyHostToDevice ) );

    free( temp );

    bitmap.anim_and_exit( (void (*)(void*,int))anim_gpu,

                           (void (*)(void*))anim_exit );

}

Although we needed different functions to instruct the runtime to bind one-
dimensional or two-dimensional textures, we use the same routine to unbind 
the texture, cudaUnbindTexture(). Because of this, our cleanup routine can 
remain unchanged.

// clean up memory allocated on the GPU

void anim_exit( DataBlock *d ) {

    cudaUnbindTexture( texIn );

    cudaUnbindTexture( texOut );
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    cudaUnbindTexture( texConstSrc );

    cudaFree( d->dev_inSrc );

    cudaFree( d->dev_outSrc );

    cudaFree( d->dev_constSrc );

    HANDLE_ERROR( cudaEventDestroy( d->start ) );

    HANDLE_ERROR( cudaEventDestroy( d->stop ) );

}

The version of our heat transfer simulation that uses two-dimensional textures 
has essentially identical performance characteristics as the version that uses 
one-dimensional textures. So from a performance standpoint, the decision 
between one- and two-dimensional textures is likely to be inconsequential. For 
our particular application, the code is a little simpler when using two- dimensional 
textures because we happen to be simulating a two-dimensional domain. But 
in general, since this is not always the case, we suggest you make the decision 
between one- and two-dimensional textures on a case-by-case basis.

Chapter Review7.4 
As we saw in the previous chapter with constant memory, some of the benefit of 
texture memory comes as the result of on-chip caching. This is especially notice-
able in applications such as our heat transfer simulation: applications that have 
some spatial coherence to their data access patterns. We saw how either one- or 
two-dimensional textures can be used, both having similar performance char-
acteristics. As with a block or grid shape, the choice of one- or two-dimensional 
texture is largely one of convenience. Since the code became somewhat cleaner 
when we switched to two-dimensional textures and the borders are handled auto-
matically, we would probably advocate the use of a 2D texture in our heat transfer 
application. But as you saw, it will work fine either way.

Texture memory can provide additional speedups if we utilize some of the conver-
sions that texture samplers can perform automatically, such as unpacking packed 
data into separate variables or converting 8- and 16-bit integers to normalized 
floating-point numbers. We didn’t explore either of these capabilities in the heat 
transfer application, but they might be useful to you!
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Chapter 8

Graphics 
 Interoperability

Since this book has focused on general-purpose computation, for the most part 
we’ve ignored that GPUs contain some special-purpose components as well. The 
GPU owes its success to its ability to perform complex rendering tasks in real 
time, freeing the rest of the system to concentrate on other work. This leads us 
to the obvious question: Can we use the GPU for both rendering and general-
purpose computation in the same application? What if the images we want to 
render rely on the results of our computations? Or what if we want to take the 
frame we’ve rendered and perform some image-processing or statistics compu-
tations on it? 

Fortunately, not only is this interaction between general-purpose computation 
and rendering modes possible, but it’s fairly easy to accomplish given what you 
already know. CUDA C applications can seamlessly interoperate with either of the 
two most popular real-time rendering APIs, OpenGL and DirectX. This chapter 
will look at the mechanics by which you can enable this functionality.

The examples in this chapter deviate some from the precedents we’ve set in 
previous chapters. In particular, this chapter assumes a significant amount about 
your background with other technologies. Specifically, we have included a consid-
erable amount of OpenGL and GLUT code in these examples, almost none of 
which will we explain in great depth. There are many superb resources to learn 
graphics APIs, both online and in bookstores, but these topics are well beyond the 
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intended scope of this book. Rather, this chapter intends to focus on CUDA C and 
the facilities it offers to incorporate it into your graphics applications. If you are 
unfamiliar with OpenGL or DirectX, you are unlikely to derive much benefit from 
this chapter and may want to skip to the next.

Chapter Objectives8.1 
Through the course of this chapter, you will accomplish the following:

You will learn what • graphics interoperability is and why you might use it.

You will learn how to set up a CUDA device for graphics interoperability.• 

You will learn how to share data between your CUDA C kernels and OpenGL • 
rendering.

Graphics Interoperation8.2 
To demonstrate the mechanics of interoperation between graphics and CUDA C, 
we’ll write an application that works in two steps. The first step uses a CUDA C 
kernel to generate image data. In the second step, the application passes this data 
to the OpenGL driver to render. To accomplish this, we will use much of the CUDA 
C we have seen in previous chapters along with some OpenGL and GLUT calls.

To start our application, we include the relevant GLUT and CUDA headers in order 
to ensure the correct functions and enumerations are defined. We also define the 
size of the window into which our application plans to render. At 512 x 512 pixels, 
we will do relatively small drawings.

#define GL_GLEXT_PROTOTYPES

#include "GL/glut.h"

#include "cuda.h"

#include "cuda_gl_interop.h"

#include "../common/book.h"

#include "../common/cpu_bitmap.h"

#define     DIM    512
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Additionally, we declare two global variables that will store handles to the data we 
intend to share between OpenGL and data. We will see momentarily how we use 
these two variables, but they will store different handles to the same buffer. We 
need two separate variables because OpenGL and CUDA will both have different 
“names” for the buffer. The variable bufferObj will be OpenGL’s name for the 
data, and the variable resource will be the CUDA C name for it.

GLuint  bufferObj;

cudaGraphicsResource *resource;

Now let’s take a look at the actual application. The first thing we do is select a 
CUDA device on which to run our application. On many systems, this is not a 
complicated process, since they will often contain only a single CUDA-enabled 
GPU. However, an increasing number of systems contain more than one CUDA-
enabled GPU, so we need a method to choose one. Fortunately, the CUDA runtime 
provides such a facility to us.

int main( int argc, char **argv ) {

    cudaDeviceProp  prop;

    int dev;

    memset( &prop, 0, sizeof( cudaDeviceProp ) );

    prop.major = 1;

    prop.minor = 0;

    HANDLE_ERROR( cudaChooseDevice( &dev, &prop ) );

You may recall that we saw cudaChooseDevice() in Chapter 3, but since it was 
something of an ancillary point, we’ll review it again now. Essentially, this code tells 
the runtime to select any GPU that has a compute capability of version 1.0 or better. 
It accomplishes this by first creating and clearing a  cudaDeviceProp structure 
and then by setting its major version to 1 and minor version to 0. It passes this 
information to cudaChooseDevice(), which instructs the runtime to select a 
GPU in the system that satisfies the constraints specified by the  cudaDeviceProp 
structure. In the next chapter, we will look more at what is meant by a GPU’s 
compute capability, but for now it suffices to say that it roughly indicates the features 
a GPU supports. All CUDA-capable GPUs have at least compute capability 1.0, so 
the net effect of this call is that the runtime will select any CUDA-capable device 
and return an identifier for this device in the variable dev. There is no guarantee 
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that this device is the best or fastest GPU, nor is there a guarantee that the device 
will be the same GPU from version to version of the CUDA runtime.

If the result of device selection is so seemingly underwhelming, why do 
we bother with all this effort to fill a cudaDeviceProp structure and call 
 cudaChooseDevice() to get a valid device ID? Furthermore, we never hassled 
with this tomfoolery before, so why now? These are good questions. It turns out 
that we need to know the CUDA device ID so that we can tell the CUDA runtime 
that we intend to use the device for CUDA and OpenGL. We achieve this with a 
call to cudaGLSetGLDevice(), passing the device ID dev we obtained from 
cudaChooseDevice():

HANDLE _ ERROR( cudaGLSetGLDevice( dev ) );

After the CUDA runtime initialization, we can proceed to initialize the OpenGL 
driver by calling our GL Utility Toolkit (GLUT) setup functions. This sequence of 
calls should look relatively familiar if you’ve used GLUT before:

    // these GLUT calls need to be made before the other GL calls

    glutInit( &argc, argv );

    glutInitDisplayMode( GLUT_DOUBLE | GLUT_RGBA );

    glutInitWindowSize( DIM, DIM );

    glutCreateWindow( "bitmap" );

At this point in main(), we’ve prepared our CUDA runtime to play nicely with the 
OpenGL driver by calling cudaGLSetGLDevice(). Then we initialized GLUT and 
created a window named “bitmap” in which to draw our results. Now we can get 
on to the actual OpenGL interoperation!

Shared data buffers are the key component to interoperation between CUDA C 
kernels and OpenGL rendering. To pass data between OpenGL and CUDA, we will 
first need to create a buffer that can be used with both APIs. We start this process 
by creating a pixel buffer object in OpenGL and storing the handle in our global 
variable GLuint bufferObj:

    glGenBuffers( 1, &bufferObj );

    glBindBuffer( GL_PIXEL_UNPACK_BUFFER_ARB, bufferObj );

    glBufferData( GL_PIXEL_UNPACK_BUFFER_ARB, DIM * DIM * 4,

                  NULL, GL_DYNAMIC_DRAW_ARB );
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If you have never used a pixel buffer object (PBO) in OpenGL, you will typi-
cally create one with these three steps: First, we generate a buffer handle 
with  glGenBuffers(). Then, we bind the handle to a pixel buffer with 
 glBindBuffer(). Finally, we request the OpenGL driver to allocate a buffer for 
us with glBufferData(). In this example, we request a buffer to hold DIM x DIM 
32-bit values and use the enumerant GL_DYNAMIC_DRAW_ARB to indicate that the 
buffer will be modified repeatedly by the application. Since we have no data to preload 
the buffer with, we pass NULL as the penultimate argument to glBufferData().

All that remains in our quest to set up graphics interoperability is notifying the 
CUDA runtime that we intend to share the OpenGL buffer named bufferObj 
with CUDA. We do this by registering bufferObj with the CUDA runtime as a 
graphics resource.

    HANDLE_ERROR( 

        cudaGraphicsGLRegisterBuffer( &resource, 

                                      bufferObj, 

                                      cudaGraphicsMapFlagsNone ) 
);

We specify to the CUDA runtime that we intend to use the 
OpenGL PBO  bufferObj with both OpenGL and CUDA by calling 
 cudaGraphicsGLRegisterBuffer(). The CUDA runtime returns a CUDA-
friendly handle to the buffer in the variable resource. This handle will be used to 
refer to bufferObj in subsequent calls to the CUDA runtime. 

The flag cudaGraphicsMapFlagsNone specifies that there is no particular 
behavior of this buffer that we want to specify, although we have the option to 
specify with cudaGraphicsMapFlagsReadOnly that the buffer will be read-
only. We could also use cudaGraphicsMapFlagsWriteDiscard to specify 
that the previous contents will be discarded, making the buffer essentially 
write-only. These flags allow the CUDA and OpenGL drivers to optimize the hard-
ware settings for buffers with restricted access patterns, although they are not 
required to be set.

Effectively, the call to glBufferData() requests the OpenGL driver to allocate a 
buffer large enough to hold DIM x DIM 32-bit values. In subsequent OpenGL calls, 
we’ll refer to this buffer with the handle bufferObj, while in CUDA runtime calls, 
we’ll refer to this buffer with the pointer resource. Since we would like to read 
from and write to this buffer from our CUDA C kernels, we will need more than just 
a handle to the object. We will need an actual address in device memory that can be 
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passed to our kernel. We achieve this by instructing the CUDA runtime to map the 
shared resource and then by requesting a pointer to the mapped resource.

    uchar4* devPtr;

    size_t  size;

    HANDLE_ERROR( cudaGraphicsMapResources( 1, &resource, NULL ) );

    HANDLE_ERROR( 

        cudaGraphicsResourceGetMappedPointer( (void**)&devPtr, 

                                              &size, 

                                              resource ) 

                );

We can then use devPtr as we would use any device pointer, except that the data 
can also be used by OpenGL as a pixel source. After all these setup shenanigans, 
the rest of main() proceeds as follows: First, we launch our kernel, passing it 
the pointer to our shared buffer. This kernel, the code of which we have not seen 
yet, generates image data to be rendered. Next, we unmap our shared resource. 
This call is important to make prior to performing rendering tasks because it 
provides synchronization between the CUDA and graphics portions of the applica-
tion. Specifically, it implies that all CUDA operations performed prior to the call 
to  cudaGraphicsUnmapResources() will complete before ensuing graphics 
calls begin. 

Lastly, we register our keyboard and display callback functions with GLUT   
(key_func and draw_func), and we relinquish control to the GLUT rendering 
loop with glutMainLoop().

    dim3    grids(DIM/16,DIM/16);

    dim3    threads(16,16);

    kernel<<<grids,threads>>>( devPtr );

    HANDLE_ERROR( cudaGraphicsUnmapResources( 1, &resource, NULL ) );

    // set up GLUT and kick off main loop

    glutKeyboardFunc( key_func );

    glutDisplayFunc( draw_func );

    glutMainLoop();

}
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The remainder of the application consists of the three functions we just high-
lighted, kernel(), key_func(), and draw_func(). So, let’s take a look at 
those.

The kernel function takes a device pointer and generates image data. In the 
following example, we’re using a kernel inspired by the ripple example in 
Chapter 5:

// based on ripple code, but uses uchar4, which is the 

// type of data graphic interop uses

__global__ void kernel( uchar4 *ptr ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = threadIdx.x + blockIdx.x * blockDim.x;

    int y = threadIdx.y + blockIdx.y * blockDim.y;

    int offset = x + y * blockDim.x * gridDim.x;

    // now calculate the value at that position

    float fx = x/(float)DIM - 0.5f;

    float fy = y/(float)DIM - 0.5f;

    unsigned char   green = 128 + 127 *

                            sin( abs(fx*100) - abs(fy*100) );

    // accessing uchar4 vs. unsigned char*

    ptr[offset].x = 0;

    ptr[offset].y = green;

    ptr[offset].z = 0;

    ptr[offset].w = 255;

}

Many familiar concepts are at work here. The method for turning thread and block 
indices into x- and y-coordinates and a linear offset has been examined several 
times. We then perform some reasonably arbitrary computations to determine the 
color for the pixel at that (x,y) location, and we store those values to memory. 
We’re again using CUDA C to procedurally generate an image on the GPU. The 
important thing to realize is that this image will then be handed directly to OpenGL 
for rendering without the CPU ever getting involved. On the other hand, in the 
ripple example of Chapter 5, we generated image data on the GPU very much like 
this, but our application then copied the buffer back to the CPU for display.
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So, how do we draw the CUDA-generated buffer using OpenGL? Well, if you recall 
the setup we performed in main(), you’ll remember the following:

    glBindBuffer( GL _ PIXEL _ UNPACK _ BUFFER _ ARB, bufferObj );

This call bound the shared buffer as a pixel source for the OpenGL driver to  
use in all subsequent calls to glDrawPixels(). Essentially, this means that  
a call to glDrawPixels() is all that we need in order to render the image  
data our CUDA C kernel generated. Consequently, the following is all that our  
draw_func() needs to do:

static void draw_func( void ) {

    glDrawPixels( DIM, DIM, GL_RGBA, GL_UNSIGNED_BYTE, 0 );

    glutSwapBuffers();

}

It’s possible you’ve seen glDrawPixels() with a buffer pointer as the last argu-
ment. The OpenGL driver will copy from this buffer if no buffer is bound as a GL_
PIXEL_UNPACK_BUFFER_ARB source. However, since our data is already on the 
GPU and we have bound our shared buffer as the GL_PIXEL_UNPACK_BUFFER_
ARB source, this last parameter instead becomes an offset into the bound buffer. 
Because we want to render the entire buffer, this offset is zero for our application. 

The last component to this example seems somewhat anticlimactic, but we’ve 
decided to give our users a method to exit the application. In this vein, our  
key_func() callback responds only to the Esc key and uses this as a signal to 
clean up and exit:

static void key_func( unsigned char key, int x, int y ) {

    switch (key) {

        case 27:

        // clean up OpenGL and CUDA

        HANDLE_ERROR( cudaGraphicsUnregisterResource( resource ) );

        glBindBuffer( GL_PIXEL_UNPACK_BUFFER_ARB, 0 );

        glDeleteBuffers( 1, &bufferObj );

        exit(0);

    }

}
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Figure 8.1 A screenshot of the hypnotic graphics interoperation example

When run, this example draws a mesmerizing picture in “NVIDIA Green” and 
black, shown in Figure 8.1. Try using it to hypnotize your friends (or enemies).

GPU Ripple with Graphics 8.3 
Interoperability
In “Section 8.1: Graphics Interoperation,” we referred to Chapter 5’s GPU ripple 
example a few times. If you recall, that application created a CPUAnimBitmap 
and passed it a function to be called whenever a frame needed to be generated.

int main( void ) {

    DataBlock   data;

    CPUAnimBitmap  bitmap( DIM, DIM, &data );

    data.bitmap = &bitmap;

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_bitmap,

                              bitmap.image_size() ) );
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    bitmap.anim_and_exit( (void (*)(void*,int))generate_frame,

                            (void (*)(void*))cleanup );

}

With the techniques we’ve learned in the previous section, we intend to create a 
GPUAnimBitmap structure. This structure will serve the same purpose as the 
CPUAnimBitmap, but in this improved version, the CUDA and OpenGL compo-
nents will cooperate without CPU intervention. When we’re done, the application 
will use a GPUAnimBitmap so that main() will become simply as follows:

int main( void ) {

    GPUAnimBitmap  bitmap( DIM, DIM, NULL );

    bitmap.anim_and_exit(

        (void (*)(uchar4*,void*,int))generate_frame, NULL );

} 

The GPUAnimBitmap structure uses the same calls we just examined in 
Section 8.1: Graphics Interoperation. However, now these calls will be abstracted 
away in a GPUAnimBitmap structure so that future examples (and potentially 
your own applications) will be cleaner.

THE GPUANIMBITMAP STRUCTURE8.3.1 

Several of the data members for our GPUAnimBitmap will look familiar to you 
from Section 8.1: Graphics Interoperation. 

struct GPUAnimBitmap {

    GLuint  bufferObj;

    cudaGraphicsResource *resource;

    int     width, height;

    void    *dataBlock;

    void    (*fAnim)(uchar4*,void*,int);

    void    (*animExit)(void*);

    void    (*clickDrag)(void*,int,int,int,int);

    int     dragStartX, dragStartY;
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We know that OpenGL and the CUDA runtime will have different names for our 
GPU buffer, and we know that we will need to refer to both of these names, 
depending on whether we are making OpenGL or CUDA C calls. Therefore, our 
structure will store both OpenGL’s bufferObj name and the CUDA runtime’s 
resource name. Since we are dealing with a bitmap image that we intend to 
display, we know that the image will have a width and height to it. 

To allow users of our GPUAnimBitmap to register for certain callback events, 
we will also store a void* pointer to arbitrary user data in dataBlock. Our 
class will never look at this data but will simply pass it back to any registered 
callback functions. The callbacks that a user may register are stored in fAnim, 
animExit, and clickDrag. The function fAnim() gets called in every call to 
glutIdleFunc(), and this function is responsible for producing the image data 
that will be rendered in the animation. The function animExit() will be called 
once, when the animation exits. This is where the user should implement cleanup 
code that needs to be executed when the animation ends. Finally, clickDrag(), 
an optional function, implements the user’s response to mouse click/drag events. 
If the user registers this function, it gets called after every sequence of mouse 
button press, drag, and release events. The location of the initial mouse click in 
this sequence is stored in (dragStartX, dragStartY) so that the start and 
endpoints of the click/drag event can be passed to the user when the mouse 
button is released. This can be used to implement interactive animations that will 
impress your friends.

Initializing a GPUAnimBitmap follows the same sequence of code that we saw 
in our previous example. After stashing away arguments in the appropriate 
structure members, we start by querying the CUDA runtime for a suitable CUDA 
device:

    GPUAnimBitmap( int w, int h, void *d ) {

        width = w;

        height = h;

        dataBlock = d;

        clickDrag = NULL;
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        // first, find a CUDA device and set it to graphic interop

        cudaDeviceProp  prop;

        int dev;

        memset( &prop, 0, sizeof( cudaDeviceProp ) );

        prop.major = 1;

        prop.minor = 0;

        HANDLE_ERROR( cudaChooseDevice( &dev, &prop ) );

After finding a compatible CUDA device, we make the important 
 cudaGLSetGLDevice() call to the CUDA runtime in order to notify it that we 
intend to use dev as a device for interoperation with OpenGL:

        cudaGLSetGLDevice( dev );

Since our framework uses GLUT to create a windowed rendering environment, we 
need to initialize GLUT. This is unfortunately a bit awkward, since glutInit() 
wants command-line arguments to pass to the windowing system. Since we have 
none we want to pass, we would like to simply specify zero command-line argu-
ments. Unfortunately, some versions of GLUT have a bug that cause applications 
to crash when zero arguments are given. So, we trick GLUT into thinking that 
we’re passing an argument, and as a result, life is good.

        int     c=1;

        char    *foo = "name";

        glutInit( &c, &foo );

We continue initializing GLUT exactly as we did in the previous example. We 
create a window in which to render, specifying a title with the string “bitmap.” If 
you’d like to name your window something more interesting, be our guest.

        glutInitDisplayMode( GLUT_DOUBLE | GLUT_RGBA );

        glutInitWindowSize( width, height );

        glutCreateWindow( "bitmap" );
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Next, we request for the OpenGL driver to allocate a buffer handle that we imme-
diately bind to the GL_PIXEL_UNPACK_BUFFER_ARB target to ensure that future 
calls to glDrawPixels() will draw to our interop buffer:

        glGenBuffers( 1, &bufferObj );

        glBindBuffer( GL_PIXEL_UNPACK_BUFFER_ARB, bufferObj );

Last, but most certainly not least, we request that the OpenGL driver allocate a 
region of GPU memory for us. Once this is done, we inform the CUDA runtime of 
this buffer and request a CUDA C name for this buffer by registering bufferObj 
with cudaGraphicsGLRegisterBuffer().

       glBufferData( GL_PIXEL_UNPACK_BUFFER_ARB, width * height * 4,

                     NULL, GL_DYNAMIC_DRAW_ARB );

       HANDLE_ERROR( 

         cudaGraphicsGLRegisterBuffer( &resource, 

                                       bufferObj,

                                       cudaGraphicsMapFlagsNone ) );

    }

With the GPUAnimBitmap set up, the only remaining concern is exactly how 
we perform the rendering. The meat of the rendering will be done in our 
 glutIdleFunction(). This function will essentially do three things. First, it 
maps our shared buffer and retrieves a GPU pointer for this buffer.

    // static method used for GLUT callbacks

    static void idle_func( void ) {

        static int ticks = 1;

        GPUAnimBitmap*  bitmap = *(get_bitmap_ptr());

        uchar4*         devPtr;

        size_t  size;
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        HANDLE_ERROR( 

            cudaGraphicsMapResources( 1, &(bitmap->resource), NULL ) 

                    );

        HANDLE_ERROR( 

            cudaGraphicsResourceGetMappedPointer( (void**)&devPtr,

                                                  &size, 

                                                  bitmap->resource ) 

                    );

Second, it calls the user-specified function fAnim() that presumably will launch 
a CUDA C kernel to fill the buffer at devPtr with image data.

        bitmap->fAnim( devPtr, bitmap->dataBlock, ticks++ );

And lastly, it unmaps the GPU pointer that will release the buffer for use by 
the OpenGL driver in rendering. This rendering will be triggered by a call to 
glutPostRedisplay().

        HANDLE_ERROR( 

            cudaGraphicsUnmapResources( 1, 

                                        &(bitmap->resource), 

                                        NULL ) );

        glutPostRedisplay();

    }

The remainder of the GPUAnimBitmap structure consists of important but some-
what tangential infrastructure code. If you have an interest in it, you should by all 
means examine it. But we feel that you’ll be able to proceed successfully, even if 
you lack the time or interest to digest the rest of the code in GPUAnimBitmap.

GPU RIPPLE REDUX8.3.2 

Now that we have a GPU version of CPUAnimBitmap, we can proceed to 
retrofit our GPU ripple application to perform its animation entirely on the GPU. 
To begin, we will include gpu_anim.h, the home of our implementation of 
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GPUAnimBitmap. We also include nearly the same kernel as we examined in 
Chapter 5.

#include "../common/book.h"

#include "../common/gpu_anim.h"

#define DIM 1024

__global__ void kernel( uchar4 *ptr, int ticks ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = threadIdx.x + blockIdx.x * blockDim.x;

    int y = threadIdx.y + blockIdx.y * blockDim.y;

    int offset = x + y * blockDim.x * gridDim.x;

    // now calculate the value at that position

    float fx = x - DIM/2;

    float fy = y - DIM/2;

    float d = sqrtf( fx * fx + fy * fy );

    unsigned char grey = (unsigned char)(128.0f + 127.0f *

                                         cos(d/10.0f - 

                                         ticks/7.0f) /

                                         (d/10.0f + 1.0f));    

    ptr[offset].x = grey;

    ptr[offset].y = grey;

    ptr[offset].z = grey;

    ptr[offset].w = 255;

}

The one and only change we’ve made is highlighted. The reason for this change 
is because OpenGL interoperation requires that our shared surfaces be “graphics 
friendly.” Because real-time rendering typically uses arrays of four-component 
(red/green/blue/alpha) data elements, our target buffer is no longer simply an 
array of unsigned char as it previously was. It’s now required to be an array of 
type uchar4. In reality, we treated our buffer in Chapter 5 as a four-component 
buffer, so we always indexed it with ptr[offset*4+k], where k indicates the 
component from 0 to 3. But now, the four-component nature of the data is made 
explicit with the switch to a uchar4 type.
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Since kernel() is a CUDA C function that generates image data, all that 
remains is writing a host function that will be used as a callback in the  
idle_func() member of GPUAnimBitmap. For our current application,  
all this function does is launch the CUDA C kernel:

void generate_frame( uchar4 *pixels, void*, int ticks ) {

    dim3    grids(DIM/16,DIM/16);

    dim3    threads(16,16);

    kernel<<<grids,threads>>>( pixels, ticks );

}

That’s basically everything we need, since all of the heavy lifting was 
done in the GPUAnimBitmap structure. To get this party started, we just 
create a GPUAnimBitmap and register our animation callback function, 
generate_frame().

int main( void ) {

    GPUAnimBitmap  bitmap( DIM, DIM, NULL );

    bitmap.anim_and_exit(

        (void (*)(uchar4*,void*,int))generate_frame, NULL );

}

Heat Transfer with Graphics Interop8.4 
So, what has been the point of doing all of this? If you look at the internals of the 
CPUAnimBitmap, the structure we used for previous animation examples, we 
would see that it works almost exactly like the rendering code in Section 8.1: 
Graphics Interoperation. 

Almost.

The key difference between the CPUAnimBitmap and the previous example is 
buried in the call to glDrawPixels().
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    glDrawPixels( bitmap->x, 

                  bitmap->y, 

                  GL_RGBA, 

                  GL_UNSIGNED_BYTE, 

                  bitmap->pixels );

We remarked in the first example of this chapter that you may have previously 
seen calls to glDrawPixels() with a buffer pointer as the last argument. 
Well, if you hadn’t before, you have now. This call in the Draw() routine of 
CPUAnimBitmap triggers a copy of the CPU buffer in bitmap->pixels to the 
GPU for rendering. To do this, the CPU needs to stop what it’s doing and initiate 
a copy onto the GPU for every frame. This requires synchronization between the 
CPU and GPU and additional latency to initiate and complete a transfer over the 
PCI Express bus. Since the call to glDrawPixels() expects a host pointer in 
the last argument, this also means that after generating a frame of image data 
with a CUDA C kernel, our Chapter 5 ripple application needed to copy the frame 
from the GPU to the CPU with a cudaMemcpy().

void generate_frame( DataBlock *d, int ticks ) {

    dim3    grids(DIM/16,DIM/16);

    dim3    threads(16,16);

    kernel<<<grids,threads>>>( d->dev_bitmap, ticks );

    HANDLE_ERROR( cudaMemcpy( d->bitmap->get_ptr(),

                              d->dev_bitmap,

                              d->bitmap->image_size(),

                              cudaMemcpyDeviceToHost ) );

}

Taken together, these facts mean that our original GPU ripple application 
was more than a little silly. We used CUDA C to compute image values for our 
rendering in each frame, but after the computations were done, we copied the 
buffer to the CPU, which then copied the buffer back to the GPU for display. This 
means that we introduced unnecessary data transfers between the host and 
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the device that stood between us and maximum performance. Let’s revisit a 
compute-intensive animation application that might see its performance improve 
by migrating it to use graphics interoperation for its rendering.

If you recall the previous chapter’s heat simulation application, you will 
remember that it also used CPUAnimBitmap in order to display the output of its 
simulation computations. We will modify this application to use our newly imple-
mented GPUAnimBitmap structure and look at how the resulting performance 
changes. As with the ripple example, our GPUAnimBitmap is almost a perfect 
drop-in replacement for CPUAnimBitmap, with the exception of the unsigned 
char to uchar4 change. So, the signature of our animation routine changes in 
order to accommodate this shift in data types.

void anim_gpu( uchar4* outputBitmap, DataBlock *d, int ticks ) {

    HANDLE_ERROR( cudaEventRecord( d->start, 0 ) );

    dim3    blocks(DIM/16,DIM/16);

    dim3    threads(16,16);

    // since tex is global and bound, we have to use a flag to

    // select which is in/out per iteration

    volatile bool dstOut = true;

    for (int i=0; i<90; i++) {

        float   *in, *out;

        if (dstOut) {

            in  = d->dev_inSrc;

            out = d->dev_outSrc;

        } else {

            out = d->dev_inSrc;

            in  = d->dev_outSrc;

        }

        copy_const_kernel<<<blocks,threads>>>( in );

        blend_kernel<<<blocks,threads>>>( out, dstOut );

        dstOut = !dstOut;

    }

    float_to_color<<<blocks,threads>>>( outputBitmap,

                                        d->dev_inSrc );



HEAT TRANSFER WITH GRAPHICS INTEROP

157

8.4 HEAT TRANSFER WITH GRAPHICS INTEROP

    HANDLE_ERROR( cudaEventRecord( d->stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( d->stop ) );

    float   elapsedTime;

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        d->start, d->stop ) );

    d->totalTime += elapsedTime;

    ++d->frames;

    printf( "Average Time per frame:  %3.1f ms\n",

            d->totalTime/d->frames  );

}

Since the float_to_color() kernel is the only function that actually uses the 
outputBitmap, it’s the only other function that needs modification as a result 
of our shift to uchar4. This function was simply considered utility code in the 
previous chapter, and we will continue to consider it utility code. However, we 
have overloaded this function and included both unsigned char and uchar4 
versions in book.h. You will notice that the differences between these func-
tions are identical to the differences between kernel() in the CPU-animated 
and GPU-animated versions of GPU ripple. Most of the code for the float_to_
color() kernels has been omitted for clarity, but we encourage you to consult 
book.h if you’re dying to see the details.

__global__ void float_to_color( unsigned char *optr,

                                const float *outSrc ) {

    // convert floating-point value to 4-component color

    optr[offset*4 + 0] = value( m1, m2, h+120 );

    optr[offset*4 + 1] = value( m1, m2, h );

    optr[offset*4 + 2] = value( m1, m2, h -120 );

    optr[offset*4 + 3] = 255;

}
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__global__ void float_to_color( uchar4 *optr,

                                const float *outSrc ) {

    

    // convert floating-point value to 4-component color

    optr[offset].x = value( m1, m2, h+120 );

    optr[offset].y = value( m1, m2, h );

    optr[offset].z = value( m1, m2, h -120 );

    optr[offset].w = 255;

}

Outside of these changes, the only major difference is in the change from 
CPUAnimBitmap to GPUAnimBitmap to perform animation.

int main( void ) {

    DataBlock   data;

    GPUAnimBitmap bitmap( DIM, DIM, &data );

    data.totalTime = 0;

    data.frames = 0;

    HANDLE_ERROR( cudaEventCreate( &data.start ) );

    HANDLE_ERROR( cudaEventCreate( &data.stop ) );

    int imageSize = bitmap.image_size();

    // assume float == 4 chars in size (i.e., rgba)

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_inSrc,

                              imageSize ) );

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_outSrc,

                              imageSize ) );

    HANDLE_ERROR( cudaMalloc( (void**)&data.dev_constSrc,

                              imageSize ) );

    HANDLE_ERROR( cudaBindTexture( NULL, texConstSrc,

                                   data.dev_constSrc,

                                   imageSize ) );
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    HANDLE_ERROR( cudaBindTexture( NULL, texIn,

                                   data.dev_inSrc,

                                   imageSize ) );

    HANDLE_ERROR( cudaBindTexture( NULL, texOut,

                                   data.dev_outSrc,

                                   imageSize ) );

    // initialize the constant data

    float *temp = (float*)malloc( imageSize );

    for (int i=0; i<DIM*DIM; i++) {

        temp[i] = 0;

        int x = i % DIM;

        int y = i / DIM;

        if ((x>300) && (x<600) && (y>310) && (y<601))

            temp[i] = MAX_TEMP;

    }

    temp[DIM*100+100] = (MAX_TEMP + MIN_TEMP)/2;

    temp[DIM*700+100] = MIN_TEMP;

    temp[DIM*300+300] = MIN_TEMP;

    temp[DIM*200+700] = MIN_TEMP;

    for (int y=800; y<900; y++) {

        for (int x=400; x<500; x++) {

            temp[x+y*DIM] = MIN_TEMP;

        }

    }

    HANDLE_ERROR( cudaMemcpy( data.dev_constSrc, temp,

                              imageSize,

                              cudaMemcpyHostToDevice ) );    

    // initialize the input data

    for (int y=800; y<DIM; y++) {

        for (int x=0; x<200; x++) {

            temp[x+y*DIM] = MAX_TEMP;

        }

    }
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    HANDLE_ERROR( cudaMemcpy( data.dev_inSrc, temp,

                              imageSize,

                              cudaMemcpyHostToDevice ) );

    free( temp );

    bitmap.anim_and_exit( (void (*)(uchar4*,void*,int))anim_gpu,

                           (void (*)(void*))anim_exit );

}

Although it might be instructive to take a glance at the rest of this enhanced heat 
simulation application, it is not sufficiently different from the previous chapter’s 
version to warrant more description. The important component is answering the 
question, how does performance change now that we’ve completely migrated the 
application to the GPU? Without having to copy every frame back to the host for 
display, the situation should be much happier than it was previously.

So, exactly how much better is it to use the graphics interoperability to perform 
the rendering? Previously, the heat transfer example consumed about 25.3ms per 
frame on our GeForce GTX 285–based test machine. After converting the appli-
cation to use graphics interoperability, this drops by 15 percent to 21.6ms per 
frame. The net result is that our rendering loop is 15 percent faster and no longer 
requires intervention from the host every time we want to display a frame. That’s 
not bad for a day’s work!

DirectX Interoperability8.5 
Although we’ve looked only at examples that use interoperation with the OpenGL 
rendering system, DirectX interoperation is nearly identical. You will still use a 
cudaGraphicsResource to refer to buffers that you share between DirectX 
and CUDA, and you will still use calls to cudaGraphicsMapResources() and 
cudaGraphicsResourceGetMappedPointer() to retrieve CUDA-friendly 
pointers to these shared resources.

For the most part, the calls that differ between OpenGL and DirectX interoperability 
have embarrassingly simple translations to DirectX. For example, rather than 
calling cudaGLSetGLDevice(), we call cudaD3D9SetDirect3DDevice() 
to specify that a CUDA device should be enabled for Direct3D 9.0 interoperability. 
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Likewise, cudaD3D10SetDirect3DDevice() enables a device for Direct3D 10 
interoperation and cudaD3D11SetDirect3DDevice() for Direct3D 11. 

The details of DirectX interoperability probably will not surprise you if you’ve 
worked through this chapter’s OpenGL examples. But if you want to use DirectX 
interoperation and want a small project to get started, we suggest that you 
migrate this chapter’s examples to use DirectX. To get started, we recom-
mend consulting the NVIDIA CUDA Programming Guide for a reference on the 
API and taking a look at the GPU Computing SDK code samples on DirectX 
interoperability.

Chapter Review8.6 
Although much of this book has been devoted to using the GPU for parallel, 
general-purpose computing, we can’t forget the GPU’s successful day job as a 
rendering engine. Many applications require or would benefit from the use of 
standard computer graphics rendering. Since the GPU is master of the rendering 
domain, all that stood between us and the exploitation of these resources was 
a lack of understanding of the mechanics in convincing the CUDA runtime and 
graphics drivers to cooperate. Now that we have seen how this is done, we 
no longer need the host to intervene in displaying the graphical results of our 
computations. This simultaneously accelerates the application’s rendering loop 
and frees the host to perform other computations in the meantime. Otherwise, 
if there are no other computations to be performed, it leaves our system more 
responsive to other events or applications.

There are many other ways to use graphics interoperability that we left unex-
plored. We looked primarily at using a CUDA C kernel to write into a pixel buffer 
object for display in a window. This image data can also be used as a texture that 
can be applied to any surface in the scene. In addition to modifying pixel buffer 
objects, you can also share vertex buffer objects between CUDA and the graphics 
engine. Among other things, this allows you to write CUDA C kernels that perform 
collision detection between objects or compute vertex displacement maps to be 
used to render objects or surfaces that interact with the user or their surround-
ings. If you’re interested in computer graphics, CUDA C’s graphics interoperability 
API enables a slew of new possibilities for your applications! 
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Chapter 9

Atomics

In the first half of the book, we saw many occasions where something compli-
cated to accomplish with a single-threaded application becomes quite easy when 
implemented using CUDA C. For example, thanks to the behind-the-scenes work 
of the CUDA runtime, we no longer needed for() loops in order to do per-pixel 
updates in our animations or heat simulations. Likewise, thousands of parallel 
blocks and threads get created and automatically enumerated with thread and 
block indices simply by calling a __global__ function from host code.

On the other hand, there are some situations where something incredibly simple 
in single-threaded applications actually presents a serious problem when we try 
to implement the same algorithm on a massively parallel architecture. In this 
chapter, we’ll take a look at some of the situations where we need to use special 
primitives in order to safely accomplish things that can be quite trivial to do in a 
traditional, single-threaded application.
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Chapter Objectives9.1 
Through the course of this chapter, you will accomplish the following:

You will learn about the • compute capability of various NVIDIA GPUs.

You will learn about what atomic operations are and why you might need them.• 

You will learn how to perform arithmetic with atomic operations in your CUDA • 
C kernels.

Compute Capability9.2 
All of the topics we have covered to this point involve capabilities that every 
CUDA-enabled GPU possesses. For example, every GPU built on the CUDA 
Architecture can launch kernels, access global memory, and read from constant 
and texture memories. But just like different models of CPUs have varying capa-
bilities and instruction sets (for example, MMX, SSE, or SSE2), so too do CUDA-
enabled graphics processors. NVIDIA refers to the supported features of a GPU as 
its compute capability.

THE COMPUTE CAPABILITY OF NVIDIA GPUS9.2.1 

As of press time, NVIDIA GPUs could potentially support compute capabilities 1.0, 
1.1, 1.2, 1.3, or 2.0. Higher-capability versions represent supersets of the versions 
below them, implementing a “layered onion” or “Russian nesting doll” hierarchy 
(depending on your metaphorical preference). For example, a GPU with compute 
capability 1.2 supports all the features of compute capabilities 1.0 and 1.1. The 
NVIDIA CUDA Programming Guide contains an up-to-date list of all CUDA-capable 
GPUs and their corresponding compute capability. Table 9.1 lists the NVIDIA GPUs 
available at press time. The compute capability supported by each GPU is listed 
next to the device’s name. 
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Table 9.1 Selected CUDA-Enabled GPUs and Their Corresponding Compute 
Capabilities

GPU
ComPUte 
CAPAbility

GeForce GTX 480, GTX 470 2.0

GeForce GTX 295 1.3

GeForce GTX 285, GTX 280 1.3

GeForce GTX 260 1.3

GeForce 9800 GX2 1.1

GeForce GTS 250, GTS 150, 9800 GTX, 9800 GTX+, 8800 GTS 512 1.1

GeForce 8800 Ultra, 8800 GTX 1.0

GeForce 9800 GT, 8800 GT, GTX 280M, 9800M GTX 1.1

GeForce GT 130, 9600 GSO, 8800 GS, 8800M GTX, GTX 260M, 9800M GT 1.1

GeForce 8800 GTS 1.0

GeForce 9600 GT, 8800M GTS, 9800M GTS 1.1

GeForce 9700M GT 1.1

GeForce GT 120, 9500 GT, 8600 GTS, 8600 GT, 9700M GT, 9650M GS, 9600M 
GT, 9600M GS, 9500M GS, 8700M GT, 8600M GT, 8600M GS 1.1

GeForce G100, 8500 GT, 8400 GS, 8400M GT, 9500M G, 9300M G, 8400M GS, 
9400 mGPU, 9300 mGPU, 8300 mGPU, 8200 mGPU, 8100 mGPU 1.1

GeForce 9300M GS, 9200M GS, 9100M G, 8400M G 1.1

Tesla S2070, S2050, C2070, C2050 2.0

Tesla S1070, C1060 1.3

Continued
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GPU
ComPUte 
CAPAbility

Tesla S870 , D870, C870 1.0

Quadro Plex 2200 D2 1.3

Quadro Plex 2100 D4 1.1

Quadro Plex 2100 Model S4 1.0

Quadro Plex 1000 Model IV 1.0

Quadro FX 5800 1.3

Quadro FX 4800 1.3

Quadro FX 4700 X2 1.1

Quadro FX 3700M 1.1

Quadro FX 5600 1.0

Quadro FX 3700 1.1

Quadro FX 3600M 1.1

Quadro FX 4600 1.0

Quadro FX 2700M 1.1

Quadro FX 1700, FX 570, NVS 320M, FX 1700M, FX 1600M, FX 770M, FX 
570M 1.1

Quadro FX 370, NVS 290, NVS 140M, NVS 135M, FX 360M 1.1

Quadro FX 370M, NVS 130M 1.1

Table 9.1 Selected CUDA-Enabled GPUs and Their Corresponding Compute 
Capabilities (Continued)
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Of course, since NVIDIA releases new graphics processors all the time, this table 
will undoubtedly be out-of-date the moment this book is published. Fortunately, 
NVIDIA has a website, and on this website you will find the CUDA Zone. Among 
other things, the CUDA Zone is home to the most up-to-date list of supported 
CUDA devices. We recommend that you consult this list before doing anything 
drastic as a result of being unable to find your new GPU in Table 9.1. Or you can 
simply run the example from Chapter 3 that prints the compute capability of each 
CUDA device in the system.

Because this is the chapter on atomics, of particular relevance is the hardware 
capability to perform atomic operations on memory. Before we look at what 
atomic operations are and why you care, you should know that atomic opera-
tions on global memory are supported only on GPUs of compute capability 1.1 
or higher. Furthermore, atomic operations on shared memory require a GPU of 
compute capability 1.2 or higher. Because of the superset nature of compute 
capability versions, GPUs of compute capability 1.2 therefore support both shared 
memory atomics and global memory atomics. Similarly, GPUs of compute capa-
bility 1.3 support both of these as well.

If it turns out that your GPU is of compute capability 1.0 and it doesn’t support 
atomic operations on global memory, well maybe we’ve just given you the perfect 
excuse to upgrade! If you decide you’re not ready to splurge on a new atomics-
enabled graphics processor, you can continue to read about atomic operations 
and the situations in which you might want to use them. But if you find it too 
heartbreaking that you won’t be able to run the examples, feel free to skip to the 
next chapter.

COMPILING FOR A MINIMUM COMPUTE CAPABILITY9.2.2 

Suppose that we have written code that requires a certain minimum compute 
capability. For example, imagine that you’ve finished this chapter and go off to 
write an application that relies heavily on global memory atomics. Having studied 
this text extensively, you know that global memory atomics require a compute 
capability of 1.1. To compile your code, you need to inform the compiler that the 
kernel cannot run on hardware with a capability less than 1.1. Moreover, in telling 
the compiler this, you’re also giving it the freedom to make other optimizations 
that may be available only on GPUs of compute capability 1.1 or greater. Informing 
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the compiler of this is as simple as adding a command-line option to your invoca-
tion of nvcc:

    nvcc -arch=sm _ 11

Similarly, to build a kernel that relies on shared memory atomics, you need to 
inform the compiler that the code requires compute capability 1.2 or greater:

    nvcc -arch=sm _ 12

Atomic Operations Overview9.3 
Programmers typically never need to use atomic operations when writing tradi-
tional single-threaded applications. If this is the situation with you, don’t worry; 
we plan to explain what they are and why we might need them in a multithreaded 
application. To clarify atomic operations, we’ll look at one of the first things you 
learned when learning C or C++, the increment operator:

    x++;

This is a single expression in standard C, and after executing this expression, the 
value in x should be one greater than it was prior to executing the increment. But 
what sequence of operations does this imply? To add one to the value of x, we 
first need to know what value is currently in x. After reading the value of x, we 
can modify it. And finally, we need to write this value back to x. 

So the three steps in this operation are as follows:

Read the value in 1. x.

Add 1 to the value read in step 1.2. 

Write the result back to 3. x.

Sometimes, this process is generally called a read-modify-write operation, since 
step 2 can consist of any operation that changes the value that was read from x.

Now consider a situation where two threads need to perform this increment on 
the value in x. Let’s call these threads A and B. For A and B to both increment the 
value in x, both threads need to perform the three operations we’ve described. 
Let’s suppose x starts with the value 7. Ideally we would like thread A and thread 
B to do the steps shown in Table 9.2.
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Table 9.2 Two threads incrementing the value in x

StEP ExAMPlE

1. Thread A reads the value in x. A reads 7 from x.

2. Thread A adds 1 to the value it read. A computes 8.

3. Thread A writes the result back to x. x <- 8.

4. Thread B reads the value in x. B reads 8 from x.

5. Thread B adds 1 to the value it read. B computes 9.

6. Thread B writes the result back to x. x <- 9.

Since x starts with the value 7 and gets incremented by two threads, we would 
expect it to hold the value 9 after they’ve completed. In the previous sequence 
of operations, this is indeed the result we obtain. Unfortunately, there are many 
other orderings of these steps that produce the wrong value. For example, 
consider the ordering shown in Table 9.3 where thread A and thread B’s opera-
tions become interleaved with each other.

Table 9.3 Two threads incrementing the value in x with interleaved operations 

StEP ExAMPlE

Thread A reads the value in x. A reads 7 from x.

Thread B reads the value in x. B reads 7 from x.

Thread A adds 1 to the value it read. A computes 8.

Thread B adds 1 to the value it read. B computes 8.

Thread A writes the result back to x. x <- 8.

Thread B writes the result back to x. x <- 8.



AtomIcs

170

Therefore, if our threads get scheduled unfavorably, we end up computing the 
wrong result. There are many other orderings for these six operations, some 
of which produce correct results and some of which do not. When moving from 
a single-threaded to a multithreaded version of this application, we suddenly 
have potential for unpredictable results if multiple threads need to read or write 
shared values. 

In the previous example, we need a way to perform the read-modify-write without 
being interrupted by another thread. Or more specifically, no other thread can 
read or write the value of x until we have completed our operation. Because 
the execution of these operations cannot be broken into smaller parts by other 
threads, we call operations that satisfy this constraint as atomic. CUDA C 
supports several atomic operations that allow you to operate safely on memory, 
even when thousands of threads are potentially competing for access.

Now we’ll take a look at an example that requires the use of atomic operations to 
compute correct results.

Computing Histograms9.4 
Oftentimes, algorithms require the computation of a histogram of some set of 
data. If you haven’t had any experience with histograms in the past, that’s not 
a big deal. Essentially, given a data set that consists of some set of elements, a 
histogram represents a count of the frequency of each element. For example, if 
we created a histogram of the letters in the phrase Programming with CUDA C, we 
would end up with the result shown in Figure 9.1.

Although simple to describe and understand, computing histograms of data 
arises surprisingly often in computer science. It’s used in algorithms for image 
processing, data compression, computer vision, machine learning, audio 
encoding, and many others. We will use histogram computation as the algorithm 
for the following code examples.

2 2 1 2 1 2 2 1 1 1 2 1 1 1

A C D G H I M N O P R T U W

Figure 9.1 Letter frequency histogram built from the string Programming with 
CUDA C
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CPU HISTOGRAM COMPUTATION9.4.1 

Because the computation of a histogram may not be familiar to all readers, we’ll 
start with an example of how to compute a histogram on the CPU. This example 
will also serve to illustrate how computing a histogram is relatively simple in a 
single-threaded CPU application. The application will be given some large stream 
of data. In an actual application, the data might signify anything from pixel colors 
to audio samples, but in our sample application, it will be a stream of randomly 
generated bytes. We can create this random stream of bytes using a utility func-
tion we have provided called big_random_block(). In our application, we 
create 100MB of random data.

#include "../common/book.h"

#define SIZE    (100*1024*1024)

int main( void ) {

    unsigned char *buffer = (unsigned char*)big_random_block( SIZE );

Since each random 8-bit byte can be any of 256 different values (from 0x00 to 
0xFF), our histogram needs to contain 256 bins in order to keep track of the 
number of times each value has been seen in the data. We create a 256-bin array 
and initialize all the bin counts to zero.

    unsigned int    histo[256];

    for (int i=0; i<256; i++)

        histo[i] = 0;

Once our histogram has been created and all the bins are initialized to zero, 
we need to tabulate the frequency with which each value appears in the data 
contained in buffer[]. The idea here is that whenever we see some value z in 
the array buffer[], we want to increment the value in bin z of our histogram. 
This way, we’re counting the number of times we have seen an occurrence of the 
value z.
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If buffer[i] is the current value we are looking at, we want to increment the 
count we have in the bin numbered buffer[i]. Since bin buffer[i] is located 
at histo[buffer[i]], we can increment the appropriate counter in a single 
line of code.

    histo[buffer[i]]++;

We do this for each element in buffer[] with a simple for() loop: 

    for (int i=0; i<SIZE; i++)

        histo[buffer[i]]++;

At this point, we’ve completed our histogram of the input data. In a full applica-
tion, this histogram might be the input to the next step of computation. In our 
simple example, however, this is all we care to compute, so we end the applica-
tion by verifying that all the bins of our histogram sum to the expected value.

    long histoCount = 0;

    for (int i=0; i<256; i++) {

        histoCount += histo[i];

    }

    printf( "Histogram Sum:  %ld\n", histoCount );

If you’ve followed closely, you will realize that this sum will always be the same, 
regardless of the random input array. Each bin counts the number of times we 
have seen the corresponding data element, so the sum of all of these bins should 
be the total number of data elements we’ve examined. In our case, this will be the 
value SIZE.

And needless to say (but we will anyway), we clean up after ourselves and return.

    free( buffer );

    return 0;

}
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On our benchmark machine, a Core 2 Duo, the histogram of this 100MB array of 
data can be constructed in 0 .416 seconds. This will provide a baseline perfor-
mance for the GPU version we intend to write. 

GPU HISTOGRAM COMPUTATION9.4.2 

We would like to adapt the histogram computation example to run on the GPU. 
If our input array is large enough, it might save a considerable amount of time 
to have different threads examining different parts of the buffer. Having different 
threads read different parts of the input should be easy enough. After all, it’s very 
similar to things we have seen so far. The problem with computing a histogram 
from the input data arises from the fact that multiple threads may want to incre-
ment the same bin of the output histogram at the same time. In this situation, we 
will need to use atomic increments to avoid a situation like the one described in 
Section 9.2: Atomic Operations Overview.

Our main() routine looks very similar to the CPU version, although we will need 
to add some of the CUDA C plumbing in order to get input to the GPU and results 
from the GPU. However, we start exactly as we did on the CPU:

int main( void ) {

    unsigned char *buffer = (unsigned char*)big_random_block( SIZE );

We will be interested in measuring how our code performs, so we initialize events 
for timing exactly like we always have.

    cudaEvent_t     start, stop;

    HANDLE_ERROR( cudaEventCreate( &start ) );

    HANDLE_ERROR( cudaEventCreate( &stop ) );

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );

After setting up our input data and events, we look to GPU memory. We 
will need to allocate space for our random input data and our output histo-
gram. After allocating the input buffer, we copy the array we generated with 
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big_random_block() to the GPU. Likewise, after allocating the histogram, we 
initialize it to zero just like we did in the CPU version.

    // allocate memory on the GPU for the file's data

    unsigned char *dev_buffer;

    unsigned int *dev_histo;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_buffer, SIZE ) );

    HANDLE_ERROR( cudaMemcpy( dev_buffer, buffer, SIZE,

                              cudaMemcpyHostToDevice ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_histo,

                              256 * sizeof( long ) ) );

    HANDLE_ERROR( cudaMemset( dev_histo, 0,

                              256 * sizeof( int ) ) );

You may notice that we slipped in a new CUDA runtime function, cudaMemset(). 
This function has a similar signature to the standard C function memset(), and 
the two functions behave nearly identically. The difference in signature is between 
these functions is that cudaMemset() returns an error code while the C library 
function memset() does not. This error code will inform the caller whether 
anything bad happened while attempting to set GPU memory. Aside from the 
error code return, the only difference is that cudaMemset() operates on GPU 
memory while memset() operates on host memory. 

After initializing the input and output buffers, we are ready to compute our histo-
gram. You will see how we prepare and launch the histogram kernel momentarily. 
For the time being, assume that we have computed the histogram on the GPU. 
After finishing, we need to copy the histogram back to the CPU, so we allocate a 
256-entry array and perform a copy from device to host.

    unsigned int    histo[256];

    HANDLE_ERROR( cudaMemcpy( histo, dev_histo,

                              256 * sizeof( int ),

                              cudaMemcpyDeviceToHost ) );
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At this point, we are done with the histogram computation so we can stop our 
timers and display the elapsed time. Just like the previous event code, this is 
identical to the timing code we’ve used for several chapters.

    // get stop time, and display the timing results

    HANDLE_ERROR( cudaEventRecord( stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( stop ) );

    float   elapsedTime;

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        start, stop ) );

    printf( "Time to generate:  %3.1f ms\n", elapsedTime );

At this point, we could pass the histogram as input to another stage in the algo-
rithm, but since we are not using the histogram for anything else, we will simply 
verify that the computed GPU histogram matches what we get on the CPU. First, 
we verify that the histogram sum matches what we expect. This is identical to the 
CPU code shown here:

    long histoCount = 0;

    for (int i=0; i<256; i++) {

        histoCount += histo[i];

    }

    printf( "Histogram Sum:  %ld\n", histoCount );

To fully verify the GPU histogram, though, we will use the CPU to compute the 
same histogram. The obvious way to do this would be to allocate a new histogram 
array, compute a histogram from the input using the code from Section 9.3.1:  
CPU Histogram Computation, and, finally, ensure that each bin in the GPU and 
CPU version match. But rather than allocate a new histogram array, we’ll opt to 
start with the GPU histogram and compute the CPU histogram “in reverse.” 

By computing the histogram “in reverse,” we mean that rather than starting 
at zero and incrementing bin values when we see data elements, we will start 
with the GPU histogram and decrement the bin’s value when the CPU sees data 
elements. Therefore, the CPU has computed the same histogram as the GPU if 
and only if every bin has the value zero when we are finished. In some sense, we 
are computing the difference between these two histograms. The code will look 
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remarkably like the CPU histogram computation but with a decrement operator 
instead of an increment operator.

    // verify that we have the same counts via CPU

    for (int i=0; i<SIZE; i++)

        histo[buffer[i]]--;

    for (int i=0; i<256; i++) {

        if (histo[i] != 0)

            printf( "Failure at %d!\n", i );

    }

As usual, the finale involves cleaning up our allocated CUDA events, GPU 
memory, and host memory.

    HANDLE_ERROR( cudaEventDestroy( start ) );

    HANDLE_ERROR( cudaEventDestroy( stop ) );

    cudaFree( dev_histo );

    cudaFree( dev_buffer );

    free( buffer );

    return 0;

}

Before, we assumed that we had launched a kernel that computed our histogram 
and then pressed on to discuss the aftermath. Our kernel launch is slightly more 
complicated than usual because of performance concerns. Because the histo-
gram contains 256 bins, using 256 threads per block proves convenient as well as 
results in high performance. But we have a lot of flexibility in terms of the number 
of blocks we launch. For example, with 100MB of data, we have 104,857,600 bytes 
of data. We could launch a single block and have each thread examine 409,600 
data elements. Likewise, we could launch 409,600 blocks and have each thread 
examine a single data element. 

As you might have guessed, the optimal solution is at a point between these two 
extremes. By running some performance experiments, optimal performance is 
achieved when the number of blocks we launch is exactly twice the number of 
multiprocessors our GPU contains. For example, a GeForce GTX 280 has 30 multi-
processors, so our histogram kernel happens to run fastest on a GeForce GTX 280 
when launched with 60 parallel blocks. 
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In Chapter 3, we discussed a method for querying various properties of the 
hardware on which our program is running. We will need to use one of these 
device properties if we intend to dynamically size our launch based on our current 
hardware platform. To accomplish this, we will use the following code segment. 
Although you haven’t yet seen the kernel implementation, you should still be able 
to follow what is going on.

    cudaDeviceProp  prop;

    HANDLE_ERROR( cudaGetDeviceProperties( &prop, 0 ) );

    int blocks = prop.multiProcessorCount;

    histo_kernel<<<blocks*2,256>>>( dev_buffer, SIZE, dev_histo );

Since our walk-through of main() has been somewhat fragmented, here is the 
entire routine from start to finish:

int main( void ) {

    unsigned char *buffer = 

                        (unsigned char*)big_random_block( SIZE );

    cudaEvent_t     start, stop;

    HANDLE_ERROR( cudaEventCreate( &start ) );

    HANDLE_ERROR( cudaEventCreate( &stop ) );

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );

    // allocate memory on the GPU for the file's data

    unsigned char *dev_buffer;

    unsigned int  *dev_histo;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_buffer, SIZE ) );

    HANDLE_ERROR( cudaMemcpy( dev_buffer, buffer, SIZE,

                              cudaMemcpyHostToDevice ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_histo,

                              256 * sizeof( long ) ) );

    HANDLE_ERROR( cudaMemset( dev_histo, 0,

                              256 * sizeof( int ) ) );
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   cudaDeviceProp  prop;

    HANDLE_ERROR( cudaGetDeviceProperties( &prop, 0 ) );

    int blocks = prop.multiProcessorCount;

    histo_kernel<<<blocks*2,256>>>( dev_buffer, SIZE, dev_histo );

    unsigned int    histo[256];

    HANDLE_ERROR( cudaMemcpy( histo, dev_histo,

                              256 * sizeof( int ),

                              cudaMemcpyDeviceToHost ) );

    // get stop time, and display the timing results

    HANDLE_ERROR( cudaEventRecord( stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( stop ) );

    float   elapsedTime;

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        start, stop ) );

    printf( "Time to generate:  %3.1f ms\n", elapsedTime );

    long histoCount = 0;

    for (int i=0; i<256; i++) {

        histoCount += histo[i];

    }

    printf( "Histogram Sum:  %ld\n", histoCount );

    // verify that we have the same counts via CPU

    for (int i=0; i<SIZE; i++)

        histo[buffer[i]]--;

    for (int i=0; i<256; i++) {

        if (histo[i] != 0)

            printf( "Failure at %d!\n", i );

    }

    HANDLE_ERROR( cudaEventDestroy( start ) );

    HANDLE_ERROR( cudaEventDestroy( stop ) );
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    cudaFree( dev_histo );

    cudaFree( dev_buffer );

    free( buffer );

    return 0;

}

HISTOGRAM KERNEL USING GLOBAL MEMORY ATOMICS

And now for the fun part: the GPU code that computes the histogram! The kernel 
that computes the histogram itself needs to be given a pointer to the input 
data array, the length of the input array, and a pointer to the output histogram. 
The first thing our kernel needs to compute is a linearized offset into the input 
data array. Each thread will start with an offset between 0 and the number of 
threads minus 1. It will then stride by the total number of threads that have been 
launched. We hope you remember this technique; we used the same logic to add 
vectors of arbitrary length when you first learned about threads.

#include "../common/book.h"

#define SIZE    (100*1024*1024)

__global__ void histo_kernel( unsigned char *buffer,

                              long size,

                              unsigned int *histo ) {

    int i = threadIdx.x + blockIdx.x * blockDim.x;

    int stride = blockDim.x * gridDim.x;

Once each thread knows its starting offset i and the stride it should use, the code 
walks through the input array incrementing the corresponding histogram bin.

    while (i < size) {

        atomicAdd( &(histo[buffer[i]]), 1 );

        i += stride;

    }

}
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The highlighted line represents the way we use atomic operations in CUDA C. 
The call atomicAdd( addr, y ); generates an atomic sequence of opera-
tions that read the value at address addr, adds y to that value, and stores the 
result back to the memory address addr. The hardware guarantees us that no 
other thread can read or write the value at address addr while we perform these 
operations, thus ensuring predictable results. In our example, the address in 
question is the location of the histogram bin that corresponds to the current byte. 
If the current byte is buffer[i], just like we saw in the CPU version, the corre-
sponding histogram bin is histo[buffer[i]]. The atomic operation needs the 
address of this bin, so the first argument is therefore &(histo[buffer[i]]). 
Since we simply want to increment the value in that bin by one, the second argu-
ment is 1.

So after all that hullabaloo, our GPU histogram computation is fairly similar to 
the corresponding CPU version.

#include "../common/book.h"

#define SIZE    (100*1024*1024)

__global__ void histo_kernel( unsigned char *buffer,

                              long size,

                              unsigned int *histo ) {

    int i = threadIdx.x + blockIdx.x * blockDim.x;

    int stride = blockDim.x * gridDim.x;

    while (i < size) {

        atomicAdd( &(histo[buffer[i]]), 1 );

        i += stride;

    }

}

However, we need to save the celebrations for later. After running this example, 
we discover that a GeForce GTX 285 can construct a histogram from 100MB of 
input data in 1.752 seconds. If you read the section on CPU-based histograms, 
you will realize that this performance is terrible. In fact, this is more than four 
times slower than the CPU version! But this is why we always measure our 
baseline performance. It would be a shame to settle for such a low-performance 
implementation simply because it runs on the GPU.
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Since we do very little work in the kernel, it is quite likely that the atomic opera-
tion on global memory is causing the problem. Essentially, when thousands 
of threads are trying to access a handful of memory locations, a great deal of 
contention for our 256 histogram bins can occur. To ensure atomicity of the incre-
ment operations, the hardware needs to serialize operations to the same memory 
location. This can result in a long queue of pending operations, and any perfor-
mance gain we might have had will vanish. We will need to improve the algorithm 
itself in order to recover this performance.

HISTOGRAM KERNEL USING SHARED AND GLOBAL MEMORY ATOMICS

Ironically, despite that the atomic operations cause this performance degrada-
tion, alleviating the slowdown actually involves using more atomics, not fewer. 
The core problem was not the use of atomics so much as the fact that thousands 
of threads were competing for access to a relatively small number of memory 
addresses. To address this issue, we will split our histogram computation into two 
phases.

In phase one, each parallel block will compute a separate histogram of the data 
that its constituent threads examine. Since each block does this independently, 
we can compute these histograms in shared memory, saving us the time of 
sending each write-off chip to DRAM. Doing this does not free us from needing 
atomic operations, though, since multiple threads within the block can still 
examine data elements with the same value. However, the fact that only 256 
threads will now be competing for 256 addresses will reduce contention from the 
global version where thousands of threads were competing. 

The first phase then involves allocating and zeroing a shared memory buffer  
to hold each block’s intermediate histogram. Recall from Chapter 5 that since 
the subsequent step will involve reading and modifying this buffer, we need a  
__syncthreads() call to ensure that every thread’s write has completed 
before progressing.

__global__ void histo_kernel( unsigned char *buffer,

                              long size,

                              unsigned int *histo ) {

    __shared__  unsigned int temp[256];

    temp[threadIdx.x] = 0;

    __syncthreads();
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After zeroing the histogram, the next step is remarkably similar to our original 
GPU histogram. The sole differences here are that we use the shared memory 
buffer temp[] instead of the global memory buffer histo[] and that we need a 
subsequent call to __syncthreads() to ensure the last of our writes have been 
committed.

    int i = threadIdx.x + blockIdx.x * blockDim.x;

    int offset = blockDim.x * gridDim.x;

    while (i < size) {

        atomicAdd( &temp[buffer[i]], 1);

        i += offset;

    }

    __syncthreads();

The last step in our modified histogram example requires that we merge each 
block’s temporary histogram into the global buffer histo[]. Suppose we split 
the input in half and two threads look at different halves and compute separate 
histograms. If thread A sees byte 0xFC 20 times in the input and thread B sees 
byte 0xFC 5 times, the byte 0xFC must have appeared 25 times in the input. 
Likewise, each bin of the final histogram is just the sum of the corresponding 
bin in thread A’s histogram and thread B’s histogram. This logic extends to any 
number of threads, so merging every block’s histogram into a single final histo-
gram involves adding each entry in the block’s histogram to the corresponding 
entry in the final histogram. For all the reasons we’ve seen already, this needs to 
be done atomically:

    atomicAdd( &(histo[threadIdx.x]), temp[threadIdx.x] ); 

}

Since we have decided to use 256 threads and have 256 histogram bins, each 
thread atomically adds a single bin to the final histogram’s total. If these numbers 
didn’t match, this phase would be more complicated. Note that we have no 
guarantees about what order the blocks add their values to the final histogram, 
but since integer addition is commutative, we will always get the same answer 
provided that the additions occur atomically. 
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And with this, our two phase histogram computation kernel is complete. Here it is 
from start to finish:

__global__ void histo_kernel( unsigned char *buffer,

                              long size,

                              unsigned int *histo ) {

    __shared__  unsigned int temp[256];

    temp[threadIdx.x] = 0;

    __syncthreads();

    int i = threadIdx.x + blockIdx.x * blockDim.x;

    int offset = blockDim.x * gridDim.x;

    while (i < size) {

        atomicAdd( &temp[buffer[i]], 1);

        i += offset;

    }

    __syncthreads();

    atomicAdd( &(histo[threadIdx.x]), temp[threadIdx.x] );

}

This version of our histogram example improves dramatically over the previous 
GPU version. Adding the shared memory component drops our running time on 
a GeForce GTX 285 to 0.057 seconds. Not only is this significantly better than the 
version that used global memory atomics only, but this beats our original CPU 
implementation by an order of magnitude (from 0.416 seconds to 0.057 seconds). 
This improvement represents greater than a sevenfold boost in speed over the 
CPU version. So despite the early setback in adapting the histogram to a GPU 
implementation, our version that uses both shared and global atomics should be 
considered a success.

Chapter Review9.5 
Although we have frequently spoken at length about how easy parallel program-
ming can be with CUDA C, we have largely ignored some of the situations when 
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massively parallel architectures such as the GPU can make our lives as program-
mers more difficult. Trying to cope with potentially tens of thousands of threads 
simultaneously modifying the same memory addresses is a common situation 
where a massively parallel machine can seem burdensome. Fortunately, we have 
hardware-supported atomic operations available to help ease this pain. 

However, as you saw with the histogram computation, sometimes reliance on 
atomic operations introduces performance issues that can be resolved only 
by rethinking parts of the algorithm. In the histogram example, we moved to a 
two-stage algorithm that alleviated contention for global memory addresses. In 
general, this strategy of looking to lessen memory contention tends to work well, 
and you should keep it in mind when using atomics in your own applications. 
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Chapter 10

Streams

Time and time again in this book we have seen how the massively data-parallel 
execution engine on a GPU can provide stunning performance gains over compa-
rable CPU code. However, there is yet another class of parallelism to be exploited 
on NVIDIA graphics processors. This parallelism is similar to the task parallelism 
that is found in multithreaded CPU applications. Rather than simultaneously 
computing the same function on lots of data elements as one does with data 
parallelism, task parallelism involves doing two or more completely different 
tasks in parallel. 

In the context of parallelism, a task could be any number of things. For example, 
an application could be executing two tasks: redrawing its GUI with one thread 
while downloading an update over the network with another thread. These tasks 
proceed in parallel, despite having nothing in common. Although the task paral-
lelism on GPUs is not currently as flexible as a general-purpose processor’s, it 
still provides opportunities for us as programmers to extract even more speed 
from our GPU-based implementations. In this chapter, we will look at CUDA 
streams and the ways in which their careful use will enable us to execute certain 
operations simultaneously on the GPU.
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Chapter Objectives10.1 
Through the course of this chapter, you will accomplish the following:

You will learn about allocating page-locked host memory.• 

You will learn what CUDA • streams are.

You will learn how to use CUDA streams to accelerate your applications.• 

Page-Locked Host Memory10.2 
In every example over the course of nine chapters, you have seen us allocate 
memory on the GPU with cudaMalloc(). On the host, we have always allocated 
memory with the vanilla, C library routine malloc(). However, the CUDA runtime 
offers its own mechanism for allocating host memory:  cudaHostAlloc(). Why 
would you bother using this function when malloc() has served you quite well 
since day one of your life as a C programmer? 

In fact, there is a significant difference between the memory that malloc() 
will allocate and the memory that cudaHostAlloc() allocates. The C 
library function malloc() allocates standard, pageable host memory, while 
 cudaHostAlloc() allocates a buffer of page-locked host memory. Sometimes 
called pinned memory, page-locked buffers have an important property: The 
operating system guarantees us that it will never page this memory out to disk, 
which ensures its residency in physical memory. The corollary to this is that it 
becomes safe for the OS to allow an application access to the physical address of 
the memory, since the buffer will not be evicted or relocated.

Knowing the physical address of a buffer, the GPU can then use direct memory 
access (DMA) to copy data to or from the host. Since DMA copies proceed without 
intervention from the CPU, it also means that the CPU could be simultaneously 
paging these buffers out to disk or relocating their physical address by updating 
the operating system’s pagetables. The possibility of the CPU moving pageable 
data means that using pinned memory for a DMA copy is essential. In fact, even 
when you attempt to perform a memory copy with pageable memory, the CUDA 
driver still uses DMA to transfer the buffer to the GPU. Therefore, your copy 
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happens twice, first from a pageable system buffer to a page-locked “staging” 
buffer and then from the page-locked system buffer to the GPU. 

As a result, whenever you perform memory copies from pageable memory, you 
guarantee that the copy speed will be bounded by the lower of the PCIE transfer 
speed and the system front-side bus speeds. A large disparity in bandwidth 
between these buses in some systems ensures that page-locked host memory 
enjoys roughly a twofold performance advantage over standard pageable memory 
when used for copying data between the GPU and the host. But even in a world 
where PCI Express and front-side bus speeds were identical, pageable buffers 
would still incur the overhead of an additional CPU-managed copy.

However, you should resist the temptation to simply do a search-and-replace 
on malloc to convert every one of your calls to use cudaHostAlloc(). Using 
pinned memory is a double-edged sword. By doing so, you have effectively opted 
out of all the nice features of virtual memory. Specifically, the computer running 
the application needs to have available physical memory for every page-locked 
buffer, since these buffers can never be swapped out to disk. This means that 
your system will run out of memory much faster than it would if you stuck to 
standard malloc() calls. Not only does this mean that your application might 
start to fail on machines with smaller amounts of physical memory, but it means 
that your application can affect the performance of other applications running on 
the system. 

These warnings are not meant to scare you out of using cudaHostAlloc(), but 
you should remain aware of the implications of page-locking buffers. We suggest 
trying to restrict their use to memory that will be used as a source or destination 
in calls to cudaMemcpy() and freeing them when they are no longer needed 
rather than waiting until application shutdown to release the memory. The use of 
cudaHostAlloc() should be no more difficult than anything else you’ve studied 
so far, but let’s take a look at an example that will both illustrate how pinned 
memory is allocated and demonstrate its performance advantage over standard 
pageable memory.

Our application will be very simple and serves primarily to benchmark 
cudaMemcpy() performance with both pageable and page-locked memory. 
All we endeavor to do is allocate a GPU buffer and a host buffer of matching 
sizes and then execute some number of copies between these two buffers. We’ll 
allow the user of this benchmark to specify the direction of the copy, either “up” 
(from host to device) or “down” (from device to host). You will also notice that, in 
order to obtain accurate timings, we set up CUDA events for the start and stop 
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of the sequence of copies. You probably remember how to do this from previous 
 performance-testing examples, but in case you’ve forgotten, the following will jog 
your memory:

float cuda_malloc_test( int size, bool up ) {

    cudaEvent_t     start, stop;

    int             *a, *dev_a;

    float           elapsedTime;

    HANDLE_ERROR( cudaEventCreate( &start ) );

    HANDLE_ERROR( cudaEventCreate( &stop ) );

    a = (int*)malloc( size * sizeof( *a ) );

    HANDLE_NULL( a );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a,

                              size * sizeof( *dev_a ) ) );

Independent of the direction of the copies, we start by allocating a host and GPU 
buffer of size integers. After this, we do 100 copies in the direction specified by 
the argument up, stopping the timer after we’ve finished copying.

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );

    for (int i=0; i<100; i++) {

        if (up)

            HANDLE_ERROR( cudaMemcpy( dev_a, a,

                                  size * sizeof( *dev_a ),

                                  cudaMemcpyHostToDevice ) );

        else

            HANDLE_ERROR( cudaMemcpy( a, dev_a,

                                  size * sizeof( *dev_a ),

                                  cudaMemcpyDeviceToHost ) );

    }

    HANDLE_ERROR( cudaEventRecord( stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( stop ) );

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        start, stop ) );
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After the 100 copies, clean up by freeing the host and GPU buffers as well as 
destroying our timing events.

    free( a );

    HANDLE_ERROR( cudaFree( dev_a ) ); 

    HANDLE_ERROR( cudaEventDestroy( start ) );

    HANDLE_ERROR( cudaEventDestroy( stop ) );

    return elapsedTime;

}

If you didn’t notice, the function cuda_malloc_test() allocated pageable host 
memory with the standard C malloc() routine. The pinned memory version 
uses cudaHostAlloc() to allocate a page-locked buffer.

float cuda_host_alloc_test( int size, bool up ) {

    cudaEvent_t     start, stop;

    int             *a, *dev_a;

    float           elapsedTime;

    HANDLE_ERROR( cudaEventCreate( &start ) );

    HANDLE_ERROR( cudaEventCreate( &stop ) );

    HANDLE_ERROR( cudaHostAlloc( (void**)&a,

                                 size * sizeof( *a ),

                                 cudaHostAllocDefault ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a,

                              size * sizeof( *dev_a ) ) );

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );

    for (int i=0; i<100; i++) {

        if (up)

            HANDLE_ERROR( cudaMemcpy( dev_a, a,

                                  size * sizeof( *a ),

                                  cudaMemcpyHostToDevice ) );

       else
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            HANDLE_ERROR( cudaMemcpy( a, dev_a,

                                  size * sizeof( *a ),

                                  cudaMemcpyDeviceToHost ) );

    }

    HANDLE_ERROR( cudaEventRecord( stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( stop ) );

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        start, stop ) );

    HANDLE_ERROR( cudaFreeHost( a ) );

    HANDLE_ERROR( cudaFree( dev_a ) );

    HANDLE_ERROR( cudaEventDestroy( start ) );

    HANDLE_ERROR( cudaEventDestroy( stop ) );

    return elapsedTime;

}

As you can see, the buffer allocated by cudaHostAlloc() is used in the same 
way as a buffer allocated by malloc(). The other change from using malloc() 
lies in the last argument, the value cudaHostAllocDefault. This last argu-
ment stores a collection of flags that we can use to modify the behavior of 
 cudaHostAlloc() in order to allocate other varieties of pinned host memory. 
In the next chapter, we’ll see how to use the other possible values of these flags, 
but for now we’re content to use the default, page-locked memory so we pass 
cudaHostAllocDefault in order to get the default behavior. To free a buffer 
that was allocated with cudaHostAlloc(), we have to use cudaFreeHost(). 
That is, every malloc() needs a free(), and every cudaHostAlloc() needs 
a cudaFreeHost().

The body of main() proceeds not unlike what you would expect.

#include "../common/book.h"

#define SIZE    (10*1024*1024)

int main( void ) {

    float           elapsedTime;

    float           MB = (float)100*SIZE*sizeof(int)/1024/1024;
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    elapsedTime = cuda_malloc_test( SIZE, true );

    printf( "Time using cudaMalloc:  %3.1f ms\n",

            elapsedTime );

    printf( "\tMB/s during copy up:  %3.1f\n",

            MB/(elapsedTime/1000) );

Because the up argument to cuda_malloc_test() is true, the previous call 
tests the performance of copies from host to device, or “up” to the device. To 
benchmark the calls in the opposite direction, we execute the same calls but with 
false as the second argument.

    elapsedTime = cuda_malloc_test( SIZE, false );

    printf( "Time using cudaMalloc:  %3.1f ms\n",

            elapsedTime );

    printf( "\tMB/s during copy down:  %3.1f\n",

            MB/(elapsedTime/1000) );

We perform the same set of steps to test the performance of  cudaHostAlloc(). 
We call cuda_ host_alloc_test() twice, once with up as true and once 
with it false.

    elapsedTime = cuda_host_alloc_test( SIZE, true );

    printf( "Time using cudaHostAlloc:  %3.1f ms\n",

            elapsedTime );

    printf( "\tMB/s during copy up:  %3.1f\n",

            MB/(elapsedTime/1000) );

    elapsedTime = cuda_host_alloc_test( SIZE, false );

    printf( "Time using cudaHostAlloc:  %3.1f ms\n",

            elapsedTime );

    printf( "\tMB/s during copy down:  %3.1f\n",

            MB/(elapsedTime/1000) ); 

}

On a GeForce GTX 285, we observed copies from host to device improving from 
2.77GB/s to 5.11GB/s when we use pinned memory instead of pageable memory. 
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Copies from the device down to the host improve similarly, from 2.43GB/s to 
5.46GB/s. So, for most PCIE bandwidth-limited applications, you will notice a 
marked improvement when using pinned memory versus standard pageable 
memory. But page-locked memory is not solely for performance enhancements. 
As we’ll see in the next sections, there are situations where we are required to 
use page-locked memory. 

CUDA Streams10.3 
In Chapter 6, we introduced the concept of CUDA events. In doing so, we post-
poned an in-depth discussion of the second argument to  cudaEventRecord(), 
instead mentioning only that it specified the stream into which we were inserting 
the event.

cudaEvent_t start;

cudaEventCreate(&start);

cudaEventRecord( start, 0 );

CUDA streams can play an important role in accelerating your applications. 
A cudA stream represents a queue of GPU operations that get executed in a 
specific order. We can add operations such as kernel launches, memory copies, 
and event starts and stops into a stream. The order in which operations are added 
to the stream specifies the order in which they will be executed. You can think of 
each stream as a task on the GPU, and there are opportunities for these tasks to 
execute in parallel. We’ll first see how streams are used, and then we’ll look at 
how you can use streams to accelerate your applications.

Using a Single CUDA Stream10.4 
As we’ll see later, the real power of streams becomes apparent only when we 
use more than one of them, but we’ll begin to illustrate the mechanics of their 
use within an application that employs just a single stream. Imagine that we 
have a CUDA C kernel that will take two input buffers of data, a and b. The kernel 
will compute some result based on a combination of values in these buffers to 
produce an output buffer c. Our vector addition example did something along 
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these lines, but in this example we’ll compute an average of three values in a and 
three values in b:

#include "../common/book.h"

#define N   (1024*1024)

#define FULL_DATA_SIZE   (N*20)

__global__ void kernel( int *a, int *b, int *c ) {

    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx < N) {

        int idx1 = (idx + 1) % 256;

        int idx2 = (idx + 2) % 256;

        float   as = (a[idx] + a[idx1] + a[idx2]) / 3.0f;

        float   bs = (b[idx] + b[idx1] + b[idx2]) / 3.0f;

        c[idx] = (as + bs) / 2;

    }

}

This kernel is not incredibly important, so don’t get too hung up on it if you 
aren’t sure exactly what it’s supposed to be computing. It’s something of a 
placeholder since the important, stream-related component of this example 
resides in main().

int main( void ) {

    cudaDeviceProp  prop;

    int whichDevice;

    HANDLE_ERROR( cudaGetDevice( &whichDevice ) );

    HANDLE_ERROR( cudaGetDeviceProperties( &prop, whichDevice ) );

    if (!prop.deviceOverlap) {

        printf( "Device will not handle overlaps, so no "

                "speed up from streams\n" );

        return 0;

    }
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The first thing we do is choose a device and check to see whether it supports a 
feature known as device overlap. A GPU supporting device overlap possesses the 
capacity to simultaneously execute a CUDA C kernel while performing a copy 
between device and host memory. As we’ve promised before, we’ll use multiple 
streams to achieve this overlap of computation and data transfer, but first we’ll 
see how to create and use a single stream. As with all of our examples that aim to 
measure performance improvements (or regressions), we begin by creating and 
starting an event timer:

    cudaEvent_t     start, stop;

    float           elapsedTime;

    // start the timers

    HANDLE_ERROR( cudaEventCreate( &start ) );

    HANDLE_ERROR( cudaEventCreate( &stop ) );

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );

After starting our timer, we create the stream we want to use for this application:

    // initialize the stream

    cudaStream_t    stream;

    HANDLE_ERROR( cudaStreamCreate( &stream ) );

Yeah, that’s pretty much all it takes to create a stream. It’s not really worth 
dwelling on, so let’s press on to the data allocation.

    int *host_a, *host_b, *host_c;

    int *dev_a, *dev_b, *dev_c;

    // allocate the memory on the GPU

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a,

                              N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_b,

                              N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_c,

                              N * sizeof(int) ) );
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    // allocate page-locked memory, used to stream

    HANDLE_ERROR( cudaHostAlloc( (void**)&host_a,

                              FULL_DATA_SIZE * sizeof(int),

                              cudaHostAllocDefault ) );

    HANDLE_ERROR( cudaHostAlloc( (void**)&host_b,

                              FULL_DATA_SIZE * sizeof(int),

                              cudaHostAllocDefault ) );

    HANDLE_ERROR( cudaHostAlloc( (void**)&host_c,

                              FULL_DATA_SIZE * sizeof(int),

                              cudaHostAllocDefault ) );

    for (int i=0; i<FULL_DATA_SIZE; i++) {

        host_a[i] = rand();

        host_b[i] = rand();

    }

We have allocated our input and output buffers on both the GPU and the 
host. Notice that we’ve decided to use pinned memory on the host by using 
 cudaHostAlloc() to perform the allocations. There is a very good reason for 
using pinned memory, and it’s not strictly because it makes copies faster. We’ll 
see in detail momentarily, but we will be using a new kind of cudaMemcpy() 
function, and this new function requires that the host memory be page-locked. 
After allocating the input buffers, we fill the host allocations with random integers 
using the C library call rand(). 

With our stream and our timing events created and our device and host buffers 
allocated, we’re ready to perform some computations! Typically we blast through 
this stage by copying the two input buffers to the GPU, launching our kernel, and 
copying the output buffer back to the host. We will follow this pattern again, but 
this time with some small changes. 

First, we will opt not to copy the input buffers in their entirety to the GPU. Rather, 
we will split our inputs into smaller chunks and perform the three-step process 
on each chunk. That is, we will take some fraction of the input buffers, copy 
them to the GPU, execute our kernel on that fraction of the buffers, and copy the 
resulting fraction of the output buffer back to the host. Imagine that we need 
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to do this because our GPU has much less memory than our host does, so the 
computation needs to be staged in chunks because the entire buffer can’t fit on 
the GPU at once. The code to perform this “chunkified” sequence of computations 
will look like this:

    // now loop over full data, in bite-sized chunks

    for (int i=0; i<FULL_DATA_SIZE; i+= N) {

        // copy the locked memory to the device, async

        HANDLE_ERROR( cudaMemcpyAsync( dev_a, host_a+i,

                                       N * sizeof(int),

                                       cudaMemcpyHostToDevice,

                                       stream ) );

        HANDLE_ERROR( cudaMemcpyAsync( dev_b, host_b+i,

                                       N * sizeof(int),

                                       cudaMemcpyHostToDevice,

                                       stream ) );

        kernel<<<N/256,256,0,stream>>>( dev_a, dev_b, dev_c );

        // copy the data from device to locked memory

        HANDLE_ERROR( cudaMemcpyAsync( host_c+i, dev_c,

                                       N * sizeof(int),

                                       cudaMemcpyDeviceToHost,

                                       stream ) );

    }

But you will notice two other unexpected shifts from the norm in the preceding 
excerpt. First, instead of using the familiar cudaMemcpy(), we’re copying 
the data to and from the GPU with a new routine, cudaMemcpyAsync(). 
The difference between these functions is subtle yet significant. The original 
cudaMemcpy() behaves like the C library function memcpy(). Specifically, this 
function executes synchronously, meaning that when the function returns, the 
copy has completed, and the output buffer now contains the contents that were 
supposed to be copied into it. 
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The opposite of a synchronous function is an asynchronous function, which 
inspired the name cudaMemcpyAsync(). The call to cudaMemcpyAsync() 
simply places a request to perform a memory copy into the stream specified by 
the argument stream. When the call returns, there is no guarantee that the 
copy has even started yet, much less that it has finished. The guarantee that 
we have is that the copy will definitely be performed before the next opera-
tion placed into the same stream. It is required that any host memory pointers 
passed to cudaMemcpyAsync() have been allocated by cudaHostAlloc(). 
That is, you are only allowed to schedule asynchronous copies to or from page-
locked memory. 

Notice that the angle-bracketed kernel launch also takes an optional stream 
argument. This kernel launch is asynchronous, just like the preceding two 
memory copies to the GPU and the trailing memory copy back from the GPU. 
Technically, we can end an iteration of this loop without having actually started 
any of the memory copies or kernel execution. As we mentioned, all that we are 
guaranteed is that the first copy placed into the stream will execute before the 
second copy. Moreover, the second copy will complete before the kernel starts, 
and the kernel will complete before the third copy starts. So as we’ve mentioned 
earlier in this chapter, a stream acts just like an ordered queue of work for the 
GPU to perform.

When the for() loop has terminated, there could still be quite a bit of work 
queued up for the GPU to finish. If we would like to guarantee that the GPU 
is done with its computations and memory copies, we need to synchronize 
it with the host. That is, we basically want to tell the host to sit around and 
wait for the GPU to finish before proceeding. We accomplish that by calling 
 cudaStreamSynchronize() and specifying the stream that we want to wait for:

    // copy result chunk from locked to full buffer

    HANDLE_ERROR( cudaStreamSynchronize( stream ) );

Since the computations and copies have completed after synchronizing stream 
with the host, we can stop our timer, collect our performance data, and free our 
input and output buffers.
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    HANDLE_ERROR( cudaEventRecord( stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( stop ) );

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        start, stop ) );

    printf( "Time taken:  %3.1f ms\n", elapsedTime );

    // cleanup the streams and memory

    HANDLE_ERROR( cudaFreeHost( host_a ) );

    HANDLE_ERROR( cudaFreeHost( host_b ) );

    HANDLE_ERROR( cudaFreeHost( host_c ) );

    HANDLE_ERROR( cudaFree( dev_a ) );

    HANDLE_ERROR( cudaFree( dev_b ) );

    HANDLE_ERROR( cudaFree( dev_c ) );

Finally, before exiting the application, we destroy the stream that we were using 
to queue the GPU operations.

    HANDLE_ERROR( cudaStreamDestroy( stream ) );

    return 0;

}

To be honest, this example has done very little to demonstrate the power of 
streams. Of course, even using a single stream can help speed up an application 
if we have work we want to complete on the host while the GPU is busy churning 
through the work we’ve stuffed into a stream. But assuming that we don’t have 
much to do on the host, we can still speed up applications by using streams, and 
in the next section we’ll take a look at how this can be accomplished.

Using Multiple CUDA Streams10.5 
Let’s adapt the single-stream example from Section 10.3: Using a Single CUDA 
Stream to perform its work in two different streams. At the beginning of the 
previous example, we checked that the device indeed supported overlap and 
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broke the computation into chunks. The idea underlying the improved version 
of this application is simple and relies on two things: the “chunked” computa-
tion and the overlap of memory copies with kernel execution. We endeavor to 
get stream 1 to copy its input buffers to the GPU while stream 0 is executing its 
kernel. Then stream 1 will execute its kernel while stream 0 copies its results 
to the host. Stream 1 will then copy its results to the host while stream 0 begins 
executing its kernel on the next chunk of data. Assuming that our memory copies 
and kernel executions take roughly the same amount of time, our application’s 
execution timeline might look something like Figure 10.1. The figure assumes 
that the GPU can perform a memory copy and a kernel execution at the same 
time, so empty boxes represent time when one stream is waiting to execute an 
operation that it cannot overlap with the other stream’s operation. Note also that 
calls to cudaMemcpyAsync() are abbreviated in the remaining figures in this 
chapter, represented simply as “memcpy.”

Stream 1

kernel

kernel

memcpy A to GPU

memcpy A to GPU

memcpy B to GPU

memcpy B to GPU

memcpy C from GPU

memcpy C from GPU

Stream 0

Ti
m

e

kernel

memcpy A to GPU

memcpy B to GPU

memcpy C from GPU kernel

memcpy A to GPU

memcpy B to GPU

memcpy C from GPU

Figure 10.1 Timeline of intended application execution using two 
independent streams
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In fact, the execution timeline can be even more favorable than this; some newer 
NVIDIA GPUs support simultaneous kernel execution and two memory copies, 
one to the device and one from the device. But on any device that supports the 
overlap of memory copies and kernel execution, the overall application should 
accelerate when we use multiple streams.

Despite these grand plans to accelerate our application, the computation kernel 
will remain unchanged.

#include "../common/book.h"

#define N   (1024*1024)

#define FULL_DATA_SIZE   (N*20)

__global__ void kernel( int *a, int *b, int *c ) {

    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx < N) {

        int idx1 = (idx + 1) % 256;

        int idx2 = (idx + 2) % 256;

        float   as = (a[idx] + a[idx1] + a[idx2]) / 3.0f;

        float   bs = (b[idx] + b[idx1] + b[idx2]) / 3.0f;

        c[idx] = (as + bs) / 2

    }

}

As with the single stream version, we will check that the device supports over-
lapping computation with memory copy. If the device does support overlap, we 
proceed as we did before by creating CUDA events to time the application.

int main( void ) {

    cudaDeviceProp  prop;

    int whichDevice;

    HANDLE_ERROR( cudaGetDevice( &whichDevice ) );

    HANDLE_ERROR( cudaGetDeviceProperties( &prop, whichDevice ) );
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    if (!prop.deviceOverlap) {

        printf( “Device will not handle overlaps, so no “

                “speed up from streams\n” );

        return 0;

    }

    cudaEvent_t     start, stop;

    float           elapsedTime;

    // start the timers

    HANDLE_ERROR( cudaEventCreate( &start ) );

    HANDLE_ERROR( cudaEventCreate( &stop ) );

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );

Next, we create our two streams exactly as we created the single stream in the 
previous section’s version of the code.

    // initialize the streams

    cudaStream_t    stream0, stream1;

    HANDLE_ERROR( cudaStreamCreate( &stream0 ) );

    HANDLE_ERROR( cudaStreamCreate( &stream1 ) );

We will assume that we still have two input buffers and a single output buffer on 
the host. The input buffers are filled with random data exactly as they were in the 
single-stream version of this application. However, now that we intend to use two 
streams to process the data, we allocate two identical sets of GPU buffers so that 
each stream can independently work on chunks of the input.

    int *host_a, *host_b, *host_c;

    int *dev_a0, *dev_b0, *dev_c0; //GPU buffers for stream0

    int *dev_a1, *dev_b1, *dev_c1; //GPU buffers for stream1

    // allocate the memory on the GPU

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a0,

                              N * sizeof(int) ) );
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    HANDLE_ERROR( cudaMalloc( (void**)&dev_b0,

                              N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_c0,

                              N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a1,

                              N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_b1,

                              N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_c1,

                              N * sizeof(int) ) );

    // allocate page-locked memory, used to stream

    HANDLE_ERROR( cudaHostAlloc( (void**)&host_a,

                              FULL_DATA_SIZE * sizeof(int),

                              cudaHostAllocDefault ) );

    HANDLE_ERROR( cudaHostAlloc( (void**)&host_b,

                              FULL_DATA_SIZE * sizeof(int),

                              cudaHostAllocDefault ) );

    HANDLE_ERROR( cudaHostAlloc( (void**)&host_c,

                              FULL_DATA_SIZE * sizeof(int),

                              cudaHostAllocDefault ) );

    for (int i=0; i<FULL_DATA_SIZE; i++) {

        host_a[i] = rand();

        host_b[i] = rand();

    }

We then loop over the chunks of input exactly as we did in the first attempt at this 
application. But now that we’re using two streams, we process twice as much 
data in each iteration of the for() loop. In stream0, we queue asynchronous 
copies of a and b to the GPU, queue a kernel execution, and then queue a copy 
back to c:
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    // now loop over full data, in bite-sized chunks

    for (int i=0; i<FULL_DATA_SIZE; i+= N*2) {

        // copy the locked memory to the device, async

        HANDLE_ERROR( cudaMemcpyAsync( dev_a0, host_a+i,

                                       N * sizeof(int),

                                       cudaMemcpyHostToDevice,

                                       stream0 ) );

        HANDLE_ERROR( cudaMemcpyAsync( dev_b0, host_b+i,

                                       N * sizeof(int),

                                       cudaMemcpyHostToDevice,

                                       stream0 ) );

        kernel<<<N/256,256,0,stream0>>>( dev_a0, dev_b0, dev_c0 );

        // copy the data from device to locked memory

        HANDLE_ERROR( cudaMemcpyAsync( host_c+i, dev_c0,

                                       N * sizeof(int),

                                       cudaMemcpyDeviceToHost,

                                       stream0 ) );

After queuing these operations in stream0, we queue identical operations on the 
next chunk of data, but this time in stream1.

        // copy the locked memory to the device, async

        HANDLE_ERROR( cudaMemcpyAsync( dev_a1, host_a+i+N,

                                       N * sizeof(int),

                                       cudaMemcpyHostToDevice,

                                       stream1 ) );

        HANDLE_ERROR( cudaMemcpyAsync( dev_b1, host_b+i+N,

                                       N * sizeof(int),

                                       cudaMemcpyHostToDevice,

                                       stream1 ) );
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        kernel<<<N/256,256,0,stream1>>>( dev_a1, dev_b1, dev_c1 );

        // copy the data from device to locked memory

        HANDLE_ERROR( cudaMemcpyAsync( host_c+i+N, dev_c1,

                                       N * sizeof(int),

                                       cudaMemcpyDeviceToHost,

                                       stream1 ) );

    }

And so our for() loop proceeds, alternating the streams to which it queues 
each chunk of data until it has queued every piece of input data for processing. 
After terminating the for() loop, we synchronize the GPU with the CPU before 
we stop our application timers. Since we are working in two streams, we need to 
synchronize both.

    HANDLE_ERROR( cudaStreamSynchronize( stream0 ) );

    HANDLE_ERROR( cudaStreamSynchronize( stream1 ) );

We wrap up main() the same way we concluded our single-stream implementa-
tion. We stop our timers, display the elapsed time, and clean up after ourselves. 
Of course, we remember that we now need to destroy two streams and free twice 
as many GPU buffers, but aside from that, this code is identical to what we’ve 
seen already:

    HANDLE_ERROR( cudaEventRecord( stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( stop ) );

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        start, stop ) );

    printf( "Time taken:  %3.1f ms\n", elapsedTime );

    // cleanup the streams and memory

    HANDLE_ERROR( cudaFreeHost( host_a ) );

    HANDLE_ERROR( cudaFreeHost( host_b ) );

    HANDLE_ERROR( cudaFreeHost( host_c ) );
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    HANDLE_ERROR( cudaFree( dev_a0 ) );

    HANDLE_ERROR( cudaFree( dev_b0 ) );

    HANDLE_ERROR( cudaFree( dev_c0 ) );

    HANDLE_ERROR( cudaFree( dev_a1 ) );

    HANDLE_ERROR( cudaFree( dev_b1 ) );

    HANDLE_ERROR( cudaFree( dev_c1 ) );

    HANDLE_ERROR( cudaStreamDestroy( stream0 ) );

    HANDLE_ERROR( cudaStreamDestroy( stream1 ) );

    return 0;

}

We benchmarked both the original, single-stream implementation from 
Section 10.3: Using a Single CUDA Stream and the improved double-stream 
version on a GeForce GTX 285. The original version takes 62ms to run to comple-
tion. After modifying it to use two streams, it takes 61ms. 

Uh-oh.

Well, the good news is that this is the reason we bother to time our applications. 
Sometimes, our most well-intended performance “enhancements” do nothing 
more than introduce unnecessary complications to the code. 

But why didn’t this application get any faster? We even said that it would get 
faster! Don’t lose hope yet, though, because we actually can accelerate the single-
stream version with a second stream, but we need to understand a bit more about 
how streams are handled by the CUDA driver in order to reap the rewards of 
device overlap. To understand how streams work behind the scenes, we’ll need to 
look at both the CUDA driver and how the CUDA hardware architecture works.

GPU Work Scheduling10.6 
Although streams are logically independent queues of operations to be executed 
on the GPU, it turns out that this abstraction does not exactly match the GPU’s 
queuing mechanism. As programmers, we think about our streams as ordered 
sequences of operations composed of a mixture of memory copies and kernel 
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invocations. However, the hardware has no notion of streams. Rather, it has one 
or more engines to perform memory copies and an engine to execute kernels. 
These engines queue commands independently from each other, resulting in a 
task-scheduling scenario like the one shown in Figure 10.2. The arrows in the 
figure illustrate how operations that have been queued into streams get sched-
uled on the hardware engines that actually execute them.

So, the user and the hardware have somewhat orthogonal notions of how to 
queue GPU work, and the burden of keeping both the user and hardware sides 
of this equation happy falls on the CUDA driver. First and foremost, there are 
important dependencies specified by the order in which operations are added 
to streams. For example, in Figure 10.2, stream 0’s memory copy of A needs to 
be completed before its memory copy of B, which in turn needs to be completed 
before kernel A is launched. But once these operations are placed into the hard-
ware’s copy engine and kernel engine queues, these dependencies are lost, so 
the CUDA driver needs to keep everyone happy by ensuring that the intrastream 
dependencies remain satisfied by the hardware’s execution units. 

Stream 0

memcpy A

memcpy B

kernel A

memcpy C

memcpy A

memcpy B

kernel A

memcpy C

memcpy A

memcpy B

memcpy C

memcpy A

memcpy B

memcpy C

kernel A

kernel A

Stream 1

Copy Engine

Kernel Engine

Figure 10.2 Mapping of CUDA streams onto GPU engines
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What does this mean to us? Well, let’s look at what’s actually happening with 
our example in Section 10.4: Using Multiple CUDA Streams. If we review the 
code, we see that our application basically amounts to a  cudaMemcpyAsync() 
of a, cudaMemcpyAsync() of b, our kernel execution, and then a 
 cudaMemcpyAsync() of c back to the host. The application enqueues all the 
operations from stream 0 followed by all the operations from stream 1. The CUDA 
driver schedules these operations on the hardware for us in the order they were 
specified, keeping the interengine dependencies straight. These dependencies 
are illustrated in Figure 10.3 where an arrow from a copy to a kernel indicates 
that the copy depends on the kernel completing execution before it can begin.

Given our newfound understanding of how the GPU schedules work, we can look 
at a timeline of how these get executed on the hardware in Figure 10.4.

Because stream 0’s copy of c back to the host depends on its kernel execution 
completing, stream 1’s completely independent copies of a and b to the GPU get 
blocked because the GPU’s engines execute work in the order it’s provided. This 
inefficiency explains why the two-stream version of our application showed abso-
lutely no speedup. The lack of improvement is a direct result of our assumption 
that the hardware works in the same manner as the CUDA stream programming 
model implies.

Kernel Engine

Stream 0: kernel

Stream 1: kernel

Stream 0: memcpy A

Stream 0: memcpy B

Stream 0: memcpy C

Stream 0: memcpy A

Stream 0: memcpy B

Stream 0: memcpy C

Copy Engine

Figure 10.3 Arrows depicting the dependency of cudaMemcpyAsync() calls 
on kernel executions in the example from Section 10.4: Using Multiple CUDA 
Streams
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Kernel Engine

Stream 0: kernel

Stream 1: kernel

Stream 0: memcpy A

Stream 0: memcpy B

Stream 0: memcpy C

Stream 1: memcpy A

Stream 1: memcpy B

Stream 1: memcpy C

Copy Engine
Ti

m
e

Figure 10.4 Execution timeline of the example from Section 10.4: Using Multiple 
CUDA Streams

The moral of this story is that we as programmers need to help out when it 
comes to ensuring that independent streams actually get executed in parallel. 
Keeping in mind that the hardware has independent engines that handle memory 
copies and kernel executions, we need to remain aware that the order in which 
we enqueue these operations in our streams will affect the way in which the 
CUDA driver schedules these for execution. In the next section, we’ll see how to 
help the hardware achieve overlap of memory copies and kernel execution.

Using Multiple CUDA Streams 10.7 
Effectively
As we saw in the previous section, if we schedule all of a particular stream’s 
operations at once, it’s very easy to inadvertently block the copies or kernel 
executions of another stream. To alleviate this problem, it suffices to enqueue our 
operations breadth-first across streams rather than depth-first. That is, rather 
than add the copy of a, copy of b, kernel execution, and copy of c to stream 0 
before starting to schedule on stream 1, we bounce back and forth between the 
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streams assigning work. We add the copy of a to stream 0, and then we add the 
copy of a to stream 1. Then we add the copy of b to stream 0, and then we add the 
copy of b to stream 1. We enqueue the kernel invocation in stream 0, and then we 
enqueue one in stream 1. Finally, we enqueue the copy of c back to the host in 
stream 0 followed by the copy of c in stream 1. 

To make this more concrete, let’s take a look at the code. All we’ve changed is 
the order in which operations get assigned to each of our two streams, so this 
will be strictly a copy-and-paste optimization. Everything else in the application 
will remain unchanged, which means that our improvements are localized to the 
for() loop. The new, breadth-first assignment to the two streams looks like this:

    for (int i=0; i<FULL_DATA_SIZE; i+= N*2) {

        // enqueue copies of a in stream0 and stream1

        HANDLE_ERROR( cudaMemcpyAsync( dev_a0, host_a+i,

                                       N * sizeof(int),

                                       cudaMemcpyHostToDevice,

                                       stream0 ) );

        HANDLE_ERROR( cudaMemcpyAsync( dev_a1, host_a+i+N,

                                       N * sizeof(int),

                                       cudaMemcpyHostToDevice,

                                       stream1 ) );

        // enqueue copies of b in stream0 and stream1

        HANDLE_ERROR( cudaMemcpyAsync( dev_b0, host_b+i,

                                       N * sizeof(int),

                                       cudaMemcpyHostToDevice,

                                       stream0 ) );

        HANDLE_ERROR( cudaMemcpyAsync( dev_b1, host_b+i+N,

                                       N * sizeof(int),

                                       cudaMemcpyHostToDevice,

                                       stream1 ) );

        // enqueue kernels in stream0 and stream1   

        kernel<<<N/256,256,0,stream0>>>( dev_a0, dev_b0, dev_c0 );

        kernel<<<N/256,256,0,stream1>>>( dev_a1, dev_b1, dev_c1 );
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        // enqueue copies of c from device to locked memory

        HANDLE_ERROR( cudaMemcpyAsync( host_c+i, dev_c0,

                                       N * sizeof(int),

                                       cudaMemcpyDeviceToHost,

                                       stream0 ) );

        HANDLE_ERROR( cudaMemcpyAsync( host_c+i+N, dev_c1,

                                       N * sizeof(int),

                                       cudaMemcpyDeviceToHost,

                                       stream1 ) );

    }

If we assume that our memory copies and kernel executions are roughly compa-
rable in execution time, our new execution timeline will look like Figure 10.5. The 
interengine dependencies are highlighted with arrows simply to illustrate that 
they are still satisfied with this new scheduling order.

Because we have queued our operations breadth-first across streams, we no 
longer have stream 0’s copy of c blocking stream 1’s initial memory copies of a 
and b. This allows the GPU to execute copies and kernels in parallel, allowing our 
application to run significantly faster. The new code runs in 48ms, a 21 percent 
improvement over our original, naïve double-stream implementation. For appli-
cations that can overlap nearly all computation and memory copies, you can 
approach a nearly twofold improvement in performance because the copy and 
kernel engines will be cranking the entire time.

Kernel Engine

Stream 0: kernel

Stream 1: kernel

Stream 0: memcpy A

Stream 0: memcpy C

Stream 1: memcpy A

Stream 1: memcpy B

Stream 1: memcpy C

Copy Engine

Ti
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e

Stream 0: memcpy B

Figure 10.5 Execution timeline of the improved example with arrows indicating 
interengine dependencies
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Chapter Review10.8 
In this chapter, we looked at a method for achieving a kind of task-level paral-
lelism in CUDA C applications. By using two (or more) CUDA streams, we can 
allow the GPU to simultaneously execute a kernel while performing a copy 
between the host and GPU. We need to be careful about two things when we 
endeavor to do this, though. First, the host memory involved needs to be allo-
cated using cudaHostAlloc() since we will queue our memory copies with 
cudaMemcpyAsync(), and asynchronous copies need to be performed with 
pinned buffers. Second, we need to be aware that the order in which we add oper-
ations to our streams will affect our capacity to achieve overlapping of copies and 
kernel executions. The general guideline involves a breadth-first, or round-robin, 
assignment of work to the streams you intend to use. This can be counterintuitive 
if you don’t understand how the hardware queuing works, so it’s a good thing to 
remember when you go about writing your own applications.
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Chapter 11

CUDA C on 
 Multiple GPUs

There is an old saying that goes something like this: “The only thing better than 
computing on a GPU is computing on two GPUs.” Systems containing multiple 
graphics processors have become more and more common in recent years. Of 
course, in some ways multi-GPU systems are similar to multi-CPU systems in 
that they are still far from the common system configuration, but it has gotten 
quite easy to end up with more than one GPU in your system. Products such as 
the GeForce GTX 295 contain two GPUs on a single card. NVIDIA’s Tesla S1070 
contains a whopping four CUDA-capable graphics processors in it. Systems built 
around a recent NVIDIA chipset will have an integrated, CUDA-capable GPU on 
the motherboard. Adding a discrete NVIDIA GPU in one of the PCI Express slots 
will make this system multi-GPU. Neither of these scenarios is very farfetched, 
so we would be best served by learning to exploit the resources of a system with 
multiple GPUs in it.
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Chapter Objectives11.1 
Through the course of this chapter, you will accomplish the following:

You will learn how to allocate and use • zero-copy memory.

You will learn how to use multiple GPUs within the same application.• 

You will learn how to allocate and use • portable pinned memory.

Zero-Copy Host Memory11.2 
In Chapter 10, we examined pinned or page-locked memory, a new type of 
host memory that came with the guarantee that the buffer would never be 
swapped out of physical memory. If you recall, we allocated this memory by 
making a call to cudaHostAlloc() and passing cudaHostAllocDefault 
to get default, pinned memory. We promised that in the next chapter, you would 
see other more exciting means by which you can allocate pinned memory. 
Assuming that this is the only reason you’ve continued reading, you will be 
glad to know that the wait is over. The flag cudaHostAllocMapped can be 
passed instead of  cudaHostAllocDefault. The host memory allocated using 
 cudaHostAllocMapped is pinned in the same sense that memory allocated 
with  cudaHostAllocDefault is pinned, specifically that it cannot be paged out 
of or relocated within physical memory. But in addition to using this memory from 
the host for memory copies to and from the GPU, this new kind of host memory 
allows us to violate one of the first rules we presented in Chapter 3 concerning 
host memory: We can access this host memory directly from within CUDA C 
kernels. Because this memory does not require copies to and from the GPU, we 
refer to it as zero-copy memory.

ZERO-COPY DOT PRODUCT11.2.1 

Typically, our GPU accesses only GPU memory, and our CPU accesses only host 
memory. But in some circumstances, it’s better to break these rules. To see an 
instance where it’s better to have the GPU manipulate host memory, we’ll revisit 
our favorite reduction: the vector dot product. If you’ve managed to read this 
entire book, you may recall our first attempt at the dot product. We copied the two 
input vectors to the GPU, performed the computation, copied the intermediate 
results back to the host, and completed the computation on the CPU.
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In this version, we’ll skip the explicit copies of our input up to the GPU and instead 
use zero-copy memory to access the data directly from the GPU. This version of 
dot product will be set up exactly like our pinned memory test. Specifically, we’ll 
write two functions; one will perform the test with standard host memory, and 
the other will finish the reduction on the GPU using zero-copy memory to hold 
the input and output buffers. First let’s take a look at the standard host memory 
version of the dot product. We start in the usual fashion by creating timing events, 
allocating input and output buffers, and filling our input buffers with data.

float malloc_test( int size ) {

    cudaEvent_t     start, stop;

    float           *a, *b, c, *partial_c;

    float           *dev_a, *dev_b, *dev_partial_c;

    float           elapsedTime;

    HANDLE_ERROR( cudaEventCreate( &start ) );

    HANDLE_ERROR( cudaEventCreate( &stop ) );

    // allocate memory on the CPU side

    a = (float*)malloc( size*sizeof(float) );

    b = (float*)malloc( size*sizeof(float) );

    partial_c = (float*)malloc( blocksPerGrid*sizeof(float) );

    // allocate the memory on the GPU

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a,

                              size*sizeof(float) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_b,

                              size*sizeof(float) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_partial_c,

                              blocksPerGrid*sizeof(float) ) );

    // fill in the host memory with data

    for (int i=0; i<size; i++) {

        a[i] = i;

        b[i] = i*2;

    }
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After the allocations and data creation, we can begin the computations. We start 
our timer, copy our inputs to the GPU, execute the dot product kernel, and copy 
the partial results back to the host.

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );

    // copy the arrays 'a' and 'b' to the GPU

    HANDLE_ERROR( cudaMemcpy( dev_a, a, size*sizeof(float),

                              cudaMemcpyHostToDevice ) );

    HANDLE_ERROR( cudaMemcpy( dev_b, b, size*sizeof(float),

                              cudaMemcpyHostToDevice ) ); 

    dot<<<blocksPerGrid,threadsPerBlock>>>( size, dev_a, dev_b,

                                            dev_partial_c );

    // copy the array 'c' back from the GPU to the CPU

    HANDLE_ERROR( cudaMemcpy( partial_c, dev_partial_c,

                              blocksPerGrid*sizeof(float),

                              cudaMemcpyDeviceToHost ) );

Now we need to finish up our computations on the CPU as we did in Chapter 5. 
Before doing this, we’ll stop our event timer because it only measures work that’s 
being performed on the GPU:

    HANDLE_ERROR( cudaEventRecord( stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( stop ) );

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        start, stop ) );

Finally, we sum our partial results and free our input and output buffers.

    // finish up on the CPU side

    c = 0;

    for (int i=0; i<blocksPerGrid; i++) {

        c += partial_c[i];

    }
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    HANDLE_ERROR( cudaFree( dev_a ) );

    HANDLE_ERROR( cudaFree( dev_b ) );

    HANDLE_ERROR( cudaFree( dev_partial_c ) );

    // free memory on the CPU side

    free( a );

    free( b );

    free( partial_c );

    // free events

    HANDLE_ERROR( cudaEventDestroy( start ) );

    HANDLE_ERROR( cudaEventDestroy( stop ) );

    printf( "Value calculated:  %f\n", c );

    return elapsedTime;

}

The version that uses zero-copy memory will be remarkably similar, with the 
exception of memory allocation. So, we start by allocating our input and output, 
filling the input memory with data as before:

float cuda_host_alloc_test( int size ) {

    cudaEvent_t     start, stop;

    float           *a, *b, c, *partial_c;

    float           *dev_a, *dev_b, *dev_partial_c;

    float           elapsedTime;

    HANDLE_ERROR( cudaEventCreate( &start ) );

    HANDLE_ERROR( cudaEventCreate( &stop ) );

    // allocate the memory on the CPU

    HANDLE_ERROR( cudaHostAlloc( (void**)&a,

                              size*sizeof(float),

                              cudaHostAllocWriteCombined |

                              cudaHostAllocMapped ) );
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    HANDLE_ERROR( cudaHostAlloc( (void**)&b,

                              size*sizeof(float),

                              cudaHostAllocWriteCombined |

                              cudaHostAllocMapped ) );

    HANDLE_ERROR( cudaHostAlloc( (void**)&partial_c,

                              blocksPerGrid*sizeof(float),

                              cudaHostAllocMapped ) );

    // fill in the host memory with data

    for (int i=0; i<size; i++) {

        a[i] = i;

        b[i] = i*2;

    }

As with Chapter 10, we see cudaHostAlloc() in action again, although we’re 
now using the flags argument to specify more than just default behavior. The 
flag cudaHostAllocMapped tells the runtime that we intend to access this 
buffer from the GPU. In other words, this flag is what makes our buffer zero-copy. 
For the two input buffers, we specify the flag cudaHostAllocWriteCombined. 
This flag indicates that the runtime should allocate the buffer as write-combined 
with respect to the CPU cache. This flag will not change functionality in our appli-
cation but represents an important performance enhancement for buffers that 
will be read only by the GPU. However, write-combined memory can be extremely 
inefficient in scenarios where the CPU also needs to perform reads from the 
buffer, so you will have to consider your application’s likely access patterns when 
making this decision.

Since we’ve allocated our host memory with the flag  cudaHostAllocMapped, 
the buffers can be accessed from the GPU. However, the GPU has a different 
virtual memory space than the CPU, so the buffers will have different addresses 
when they’re accessed on the GPU as compared to the CPU. The call to 
 cudaHostAlloc() returns the CPU pointer for the memory, so we need to call 
cudaHostGetDevicePointer() in order to get a valid GPU pointer for the 
memory. These pointers will be passed to the kernel and then used by the GPU to 
read from and write to our host allocations:
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    HANDLE_ERROR( cudaHostGetDevicePointer( &dev_a, a, 0 ) );

    HANDLE_ERROR( cudaHostGetDevicePointer( &dev_b, b, 0 ) );

    HANDLE_ERROR( cudaHostGetDevicePointer( &dev_partial_c,

                                            partial_c, 0 ) );

With valid device pointers in hand, we’re ready to start our timer and launch our 
kernel.

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );

    dot<<<blocksPerGrid,threadsPerBlock>>>( size, dev_a, dev_b,

                                            dev_partial_c );

    HANDLE_ERROR( cudaThreadSynchronize() );

Even though the pointers dev_a, dev_b, and dev_partial_c all reside on 
the host, they will look to our kernel as if they are GPU memory, thanks to our 
calls to cudaHostGetDevicePointer(). Since our partial results are already 
on the host, we don’t need to bother with a cudaMemcpy() from the device. 
However, you will notice that we’re synchronizing the CPU with the GPU by calling 
 cudaThreadSynchronize(). The contents of zero-copy memory are undefined 
during the execution of a kernel that potentially makes changes to its contents. 
After synchronizing, we’re sure that the kernel has completed and that our zero-
copy buffer contains the results so we can stop our timer and finish the computa-
tion on the CPU as we did before.

    HANDLE_ERROR( cudaEventRecord( stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( stop ) );

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        start, stop ) );

    // finish up on the CPU side

    c = 0;

    for (int i=0; i<blocksPerGrid; i++) {

        c += partial_c[i];

    }
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The only thing remaining in the cudaHostAlloc() version of the dot product is 
cleanup.

    HANDLE_ERROR( cudaFreeHost( a ) );

    HANDLE_ERROR( cudaFreeHost( b ) );

    HANDLE_ERROR( cudaFreeHost( partial_c ) );

    // free events

    HANDLE_ERROR( cudaEventDestroy( start ) );

    HANDLE_ERROR( cudaEventDestroy( stop ) );

    printf( "Value calculated:  %f\n", c );

    return elapsedTime;

}

You will notice that no matter what flags we use with cudaHostAlloc(), 
the memory always gets freed in the same way. Specifically, a call to 
 cudaFreeHost() does the trick. 

And that’s that! All that remains is to look at how main() ties all of this together. 
The first thing we need to check is whether our device supports mapping host 
memory. We do this the same way we checked for device overlap in the previous 
chapter, with a call to cudaGetDeviceProperties().

int main( void ) {

    cudaDeviceProp  prop;

    int whichDevice;

    HANDLE_ERROR( cudaGetDevice( &whichDevice ) );

    HANDLE_ERROR( cudaGetDeviceProperties( &prop, whichDevice ) );

    if (prop.canMapHostMemory != 1) {

        printf( "Device cannot map memory.\n" );

        return 0;

    }
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Assuming that our device supports zero-copy memory, we place the runtime 
into a state where it will be able to allocate zero-copy buffers for us. We accom-
plish this by a call to cudaSetDeviceFlags() and by passing the flag 
 cudaDeviceMapHost to indicate that we want the device to be allowed to map 
host memory:

    HANDLE_ERROR( cudaSetDeviceFlags( cudaDeviceMapHost ) );

That’s really all there is to main(). We run our two tests, display the elapsed 
time, and exit the application:

    float elapsedTime = malloc_test( N );

    printf( "Time using cudaMalloc:  %3.1f ms\n",

            elapsedTime );

    elapsedTime = cuda_host_alloc_test( N );

    printf( "Time using cudaHostAlloc:  %3.1f ms\n",

            elapsedTime );

}

The kernel itself is unchanged from Chapter 5, but for the sake of completeness, 
here it is in its entirety:

#define imin(a,b) (a<b?a:b)

const int N = 33 * 1024 * 1024;

const int threadsPerBlock = 256;

const int blocksPerGrid =

            imin( 32, (N+threadsPerBlock-1) / threadsPerBlock );

__global__ void dot( int size, float *a, float *b, float *c ) {

    __shared__ float cache[threadsPerBlock];

    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    int cacheIndex = threadIdx.x;
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    float   temp = 0;

    while (tid < size) {

        temp += a[tid] * b[tid];

        tid += blockDim.x * gridDim.x;

    }

    

    // set the cache values

    cache[cacheIndex] = temp;

    

    // synchronize threads in this block

    __syncthreads();

    // for reductions, threadsPerBlock must be a power of 2

    // because of the following code

    int i = blockDim.x/2;

    while (i != 0) {

        if (cacheIndex < i)

            cache[cacheIndex] += cache[cacheIndex + i];

        __syncthreads();

        i /= 2;

    }

    if (cacheIndex == 0)

        c[blockIdx.x] = cache[0];

}

ZERO-COPY PERFORMANCE11.2.2 

What should we expect to gain from using zero-copy memory? The answer to 
this question is different for discrete GPUs and integrated GPUs. Discrete GPUs 
are graphics processors that have their own dedicated DRAMs and typically sit 
on separate circuit boards from the CPU. For example, if you have ever installed 
a graphics card into your desktop, this GPU is a discrete GPU. Integrated GPUs 
are graphics processors built into a system’s chipset and usually share regular 
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system memory with the CPU. Many recent systems built with NVIDIA’s nForce 
media and communications processors (MCPs) contain CUDA-capable inte-
grated GPUs. In addition to nForce MCPs, all the netbook, notebook, and desktop 
computers based on NVIDIA’s new ION platform contain integrated, CUDA-
capable GPUs. For integrated GPUs, the use of zero-copy memory is always a 
performance win because the memory is physically shared with the host anyway. 
Declaring a buffer as zero-copy has the sole effect of preventing unnecessary 
copies of data. But remember that nothing is free and that zero-copy buffers 
are still constrained in the same way that all pinned memory allocations are 
constrained: Each pinned allocation carves into the system’s available physical 
memory, which will eventually degrade system performance.

In cases where inputs and outputs are used exactly once, we will even see a 
performance enhancement when using zero-copy memory with a discrete GPU. 
Since GPUs are designed to excel at hiding the latencies associated with memory 
access, performing reads and writes over the PCI Express bus can be mitigated 
to some degree by this mechanism, yielding a noticeable performance advantage. 
But since the zero-copy memory is not cached on the GPU, in situations where 
the memory gets read multiple times, we will end up paying a large penalty that 
could be avoided by simply copying the data to the GPU first. 

How do you determine whether a GPU is integrated or discrete? Well, you can 
open up your computer and look, but this solution is fairly unworkable for your 
CUDA C application. Your code can check this property of a GPU by, not surpris-
ingly, looking at the structure returned by cudaGetDeviceProperties(). This 
structure has a field named integrated, which will be true if the device is an 
integrated GPU and false if it’s not. 

Since our dot product application satisfies the “read and/or write exactly once” 
constraint, it’s possible that it will enjoy a performance boost when run with 
zero-copy memory. And in fact, it does enjoy a slight boost in performance. On a 
GeForce GTX 285, the execution time improves by more than 45 percent, drop-
ping from 98.1ms to 52.1ms when migrated to zero-copy memory. A GeForce GTX 
280 enjoys a similar improvement, speeding up by 34 percent from 143.9 ms to 
94.7ms. Of course, different GPUs will exhibit different performance characteris-
tics because of varying ratios of computation to bandwidth, as well as because of 
variations in effective PCI Express bandwidth across chipsets.
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Using Multiple GPUs11.3 
In the previous section, we mentioned how devices are either integrated or 
discrete GPUs, where the former is built into the system’s chipset and the latter is 
typically an expansion card in a PCI Express slot. More and more systems contain 
both integrated and discrete GPUs, meaning that they also have multiple CUDA-
capable processors. NVIDIA also sells products, such as the GeForce GTX 295, 
that contain more than one GPU. A GeForce GTX 295, while physically occupying 
a single expansion slot, will appear to your CUDA applications as two separate 
GPUs. Furthermore, users can also add multiple GPUs to separate PCI Express 
slots, connecting them with bridges using NVIDIA’s scalable link interface (slI) 
technology. As a result of these trends, it has become relatively common to have 
a CUDA application running on a system with multiple graphics processors. Since 
our CUDA applications tend to be very parallelizable to begin with, it would be 
excellent if we could use every CUDA device in the system to achieve maximum 
throughput. So, let’s figure out how we can accomplish this.

To avoid learning a new example, let’s convert our dot product to use multiple 
GPUs. To make our lives easier, we will summarize all the data necessary to 
compute a dot product in a single structure. You’ll see momentarily exactly why 
this will make our lives easier.

struct DataStruct {

    int     deviceID;

    int     size;

    float   *a;

    float   *b;

    float   returnValue;

};

This structure contains the identification for the device on which the dot product 
will be computed; it contains the size of the input buffers as well as pointers to 
the two inputs a and b. Finally, it has an entry to store the value computed as the 
dot product of a and b.

To use N GPUs, we first would like to know exactly what value of N we’re dealing 
with. So, we start our application with a call to cudaGetDeviceCount() in 
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order to determine how many CUDA-capable processors have been installed in 
our system.

int main( void ) {

    int deviceCount;

    HANDLE_ERROR( cudaGetDeviceCount( &deviceCount ) );

    if (deviceCount < 2) {

        printf( "We need at least two compute 1.0 or greater "

                "devices, but only found %d\n", deviceCount );

        return 0;

    }

This example is designed to show multi-GPU usage, so you’ll notice that we 
simply exit if the system has only one CUDA device (not that there’s anything 
wrong with that). This is not encouraged as a best practice for obvious reasons. 
To keep things as simple as possible, we’ll allocate standard host memory for our 
inputs and fill them with data exactly how we’ve done in the past.

    float   *a = (float*)malloc( sizeof(float) * N );

    HANDLE_NULL( a );

    float   *b = (float*)malloc( sizeof(float) * N );

    HANDLE_NULL( b );

    // fill in the host memory with data

    for (int i=0; i<N; i++) {

        a[i] = i;

        b[i] = i*2;

    }

We’re now ready to dive into the multi-GPU code. The trick to using multiple GPUs 
with the CUDA runtime API is realizing that each GPU needs to be controlled 
by a different CPU thread. Since we have used only a single GPU before, we 
haven’t needed to worry about this. We have moved a lot of the annoyance of 
multithreaded code to our file of auxiliary code, book.h. With this code tucked 
away, all we need to do is fill a structure with data necessary to perform the 
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 computations. Although the system could have any number of GPUs greater than 
one, we will use only two of them for clarity:

    DataStruct  data[2];

    data[0].deviceID = 0;

    data[0].size = N/2;

    data[0].a = a;

    data[0].b = b;

    data[1].deviceID = 1;

    data[1].size = N/2;

    data[1].a = a + N/2;

    data[1].b = b + N/2;

To proceed, we pass one of the DataStruct variables to a utility function we’ve 
named start_thread(). We also pass start_thread() a pointer to a func-
tion to be called by the newly created thread; this example’s thread function is 
called routine(). The function start_thread() will create a new thread that 
then calls the specified function, passing the DataStruct to this function. The 
other call to routine() gets made from the default application thread (so we’ve 
created only one additional thread).

    CUTThread   thread = start_thread( routine, &(data[0]) );

    routine( &(data[1]) );

Before we proceed, we have the main application thread wait for the other thread 
to finish by calling end_thread().

    end_thread( thread );

Since both threads have completed at this point in main(), it’s safe to clean up 
and display the result.
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    free( a );

    free( b );

    printf( "Value calculated:  %f\n",

            data[0].returnValue + data[1].returnValue );

    return 0;

}

Notice that we sum the results computed by each thread. This is the last step 
in our dot product reduction. In another algorithm, this combination of multiple 
results may involve other steps. In fact, in some applications, the two GPUs may 
be executing completely different code on completely different data sets. For 
simplicity’s sake, this is not the case in our dot product example.

Since the dot product routine is identical to the other versions you’ve seen, we’ll 
omit it from this section. However, the contents of routine() may be of interest. 
We declare routine() as taking and returning a void* so that you can reuse 
the start_thread() code with arbitrary implementations of a thread function. 
Although we’d love to take credit for this idea, it’s fairly standard procedure for 
callback functions in C:

void* routine( void *pvoidData ) {

    DataStruct  *data = (DataStruct*)pvoidData;

    HANDLE_ERROR( cudaSetDevice( data->deviceID ) );

Each thread calls cudaSetDevice(), and each passes a different ID to this 
function. As a result, we know each thread will be manipulating a different GPU. 
These GPUs may have identical performance, as with the dual-GPU GeForce 
GTX 295, or they may be different GPUs as would be the case in a system that 
has both an integrated GPU and a discrete GPU. These details are not important 
to our application, though they might be of interest to you. Particularly, these 
details prove useful if you depend on a certain minimum compute capability to 
launch your kernels or if you have a serious desire to load balance your applica-
tion across the system’s GPUs. If the GPUs are different, you will need to do some 
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work to partition the computations so that each GPU is occupied for roughly 
the same amount of time. For our purposes in this example, however, these are 
piddling details with which we won’t worry.

Outside the call to cudaSetDevice() to specify which CUDA device we 
intend to use, this implementation of routine() is remarkably similar to the 
vanilla malloc_test() from Section 11.1.1: Zero-Copy Dot Product. We allo-
cate buffers for our GPU copies of the input and a buffer for our partial results 
followed by a cudaMemcpy() of each input array to the GPU.

    int     size = data->size;

    float   *a, *b, c, *partial_c;

    float   *dev_a, *dev_b, *dev_partial_c;

    // allocate memory on the CPU side

    a = data->a;

    b = data->b;

    partial_c = (float*)malloc( blocksPerGrid*sizeof(float) );

    // allocate the memory on the GPU

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a,

                              size*sizeof(float) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_b,

                              size*sizeof(float) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_partial_c,

                              blocksPerGrid*sizeof(float) ) );

    // copy the arrays 'a' and 'b' to the GPU

    HANDLE_ERROR( cudaMemcpy( dev_a, a, size*sizeof(float),

                              cudaMemcpyHostToDevice ) );

    HANDLE_ERROR( cudaMemcpy( dev_b, b, size*sizeof(float),

                              cudaMemcpyHostToDevice ) ); 

We then launch our dot product kernel, copy the results back, and finish the 
computation on the CPU.
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    dot<<<blocksPerGrid,threadsPerBlock>>>( size, dev_a, dev_b,

                                            dev_partial_c );

    // copy the array 'c' back from the GPU to the CPU

    HANDLE_ERROR( cudaMemcpy( partial_c, dev_partial_c,

                              blocksPerGrid*sizeof(float),

                              cudaMemcpyDeviceToHost ) );

    // finish up on the CPU side

    c = 0;

    for (int i=0; i<blocksPerGrid; i++) {

        c += partial_c[i];

    }

As usual, we clean up our GPU buffers and return the dot product we’ve 
computed in the returnValue field of our DataStruct.

    HANDLE_ERROR( cudaFree( dev_a ) );

    HANDLE_ERROR( cudaFree( dev_b ) );

    HANDLE_ERROR( cudaFree( dev_partial_c ) );

    // free memory on the CPU side

    free( partial_c );

    data->returnValue = c;

    return 0;

}

So when we get down to it, outside of the host thread management issue, using 
multiple GPUs is not too much tougher than using a single GPU. Using our helper 
code to create a thread and execute a function on that thread, this becomes 
significantly more manageable. If you have your own thread libraries, you should 
feel free to use them in your own applications. You just need to remember that 
each GPU gets its own thread, and everything else is cream cheese.
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Portable Pinned Memory11.4 
The last important piece to using multiple GPUs involves the use of pinned 
memory. We learned in Chapter 10 that pinned memory is actually host memory 
that has its pages locked in physical memory to prevent it from being paged out 
or relocated. However, it turns out that pages can appear pinned to a single CPU 
thread only. That is, they will remain page-locked if any thread has allocated them 
as pinned memory, but they will only appear page-locked to the thread that allo-
cated them. If the pointer to this memory is shared between threads, the other 
threads will see the buffer as standard, pageable data. 

As a side effect of this behavior, when a thread that did not allocate a pinned 
buffer attempts to perform a cudaMemcpy() using it, the copy will be performed 
at standard pageable memory speeds. As we saw in Chapter 10, this speed can 
be roughly 50 percent of the maximum attainable transfer speed. What’s worse, 
if the thread attempts to enqueue a cudaMemcpyAsync() call into a CUDA 
stream, this operation will fail because it requires a pinned buffer to proceed. 
Since the buffer appears pageable from the thread that didn’t allocate it, the call 
dies a grisly death. Even in the future nothing works!

But there is a remedy to this problem. We can allocate pinned memory as 
portable, meaning that we will be allowed to migrate it between host threads 
and allow any thread to view it as a pinned buffer. To do so, we use our trusty 
 cudaHostAlloc() to allocate the memory, but we call it with a new flag: 
 cudaHostAllocPortable. This flag can be used in concert with the 
other flags you’ve seen, such as cudaHostAllocWriteCombined and 
 cudaHostAllocMapped. This means that you can allocate your host buffers as 
any combination of portable, zero-copy and write-combined.

To demonstrate portable pinned memory, we’ll enhance our multi-GPU dot 
product application. We’ll adapt our original zero-copy version of the dot 
product, so this version begins as something of a mash-up of the zero-copy and 
multi-GPU versions. As we have throughout this chapter, we need to verify that 
there are at least two CUDA-capable GPUs and that both can handle zero-copy 
buffers.
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int main( void ) {

    int deviceCount;

    HANDLE_ERROR( cudaGetDeviceCount( &deviceCount ) );

    if (deviceCount < 2) {

        printf( "We need at least two compute 1.0 or greater "

                "devices, but only found %d\n", deviceCount );

        return 0;

    }

    cudaDeviceProp  prop;

    for (int i=0; i<2; i++) {

        HANDLE_ERROR( cudaGetDeviceProperties( &prop, i ) );

        if (prop.canMapHostMemory != 1) {

            printf( "Device %d cannot map memory.\n", i );

            return 0;

        }

    }

In previous examples, we’d be ready to start allocating memory on the host to 
hold our input vectors. To allocate portable pinned memory, however, it’s neces-
sary to first set the CUDA device on which we intend to run. Since we intend to 
use the device for zero-copy memory as well, we follow the cudaSetDevice() 
call with a call to cudaSetDeviceFlags(), as we did in Section 11.1.1: Zero-
Copy Dot Product.

    float *a, *b;

    HANDLE_ERROR( cudaSetDevice( 0 ) );

    HANDLE_ERROR( cudaSetDeviceFlags( cudaDeviceMapHost ) );

    HANDLE_ERROR( cudaHostAlloc( (void**)&a, N*sizeof(float),

                              cudaHostAllocWriteCombined |

                              cudaHostAllocPortable |

                              cudaHostAllocMapped ) );

    HANDLE_ERROR( cudaHostAlloc( (void**)&b, N*sizeof(float),

                              cudaHostAllocWriteCombined |

                              cudaHostAllocPortable      |

                              cudaHostAllocMapped ) );
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Earlier in this chapter, we called cudaSetDevice() but not until we had already 
allocated our memory and created our threads. One of the requirements of allo-
cating page-locked memory with cudaHostAlloc(), though, is that we have 
initialized the device first by calling cudaSetDevice(). You will also notice that 
we pass our newly learned flag, cudaHostAllocPortable, to both allocations. 
Since these were allocated after calling cudaSetDevice(0), only CUDA device 
zero would see these buffers as pinned memory if we had not specified that they 
were to be portable allocations.

We continue the application as we have in the past, generating data for our input 
vectors and preparing our DataStruct structures as we did in the multi-GPU 
example in Section 11.2: Zero-Copy Performance.

    // fill in the host memory with data

    for (int i=0; i<N; i++) {

        a[i] = i;

        b[i] = i*2;

    }

    // prepare for multithread

    DataStruct  data[2];

    data[0].deviceID = 0;

    data[0].offset = 0;

    data[0].size = N/2;

    data[0].a = a;

    data[0].b = b;

    data[1].deviceID = 1;

    data[1].offset = N/2;

    data[1].size = N/2;

    data[1].a = a;

    data[1].b = b;

We can then create our secondary thread and call routine() to begin 
computing on each device.
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    CUTThread   thread = start_thread( routine, &(data[1]) );

    routine( &(data[0]) );

    end_thread( thread );

Because our host memory was allocated by the CUDA runtime, we use 
 cudaFreeHost() to free it. Other than no longer calling free(), we have seen 
all there is to see in main().

    // free memory on the CPU side

    HANDLE_ERROR( cudaFreeHost( a ) );

    HANDLE_ERROR( cudaFreeHost( b ) );

    printf( "Value calculated:  %f\n",

            data[0].returnValue + data[1].returnValue );

    return 0;

}

To support portable pinned memory and zero-copy memory in our multi-GPU 
application, we need to make two notable changes in the code for routine(). 
The first is a bit subtle, and in  no way should this have been obvious.

void* routine( void *pvoidData ) {

    DataStruct  *data = (DataStruct*)pvoidData;

    if (data->deviceID != 0) {

        HANDLE_ERROR( cudaSetDevice( data->deviceID ) );

        HANDLE_ERROR( cudaSetDeviceFlags( cudaDeviceMapHost ) );

    }

You may recall in our multi-GPU version of this code, we need a call to 
cudaSetDevice() in routine() in order to ensure that each participating 
thread controls a different GPU. On the other hand, in this example we have 
already made a call to cudaSetDevice() from the main thread. We did so in 
order to allocate pinned memory in main(). As a result, we only want to call 
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cudaSetDevice() and cudaSetDeviceFlags() on devices where we have 
not made this call. That is, we call these two functions if the deviceID is not 
zero. Although it would yield cleaner code to simply repeat these calls on device 
zero, it turns out that this is in fact an error. Once you have set the device on a 
particular thread, you cannot call cudaSetDevice() again, even if you pass the 
same device identifier. The highlighted if() statement helps us avoid this little 
nasty-gram from the CUDA runtime, so we move on to the next important change 
to routine().

In addition to using portable pinned memory for the host-side memory, we 
are using zero-copy in order to access these buffers directly from the GPU. 
Consequently, we no longer use cudaMemcpy() as we did in the original 
multi-GPU application, but we use cudaHostGetDevicePointer() to get 
valid device pointers for the host memory as we did in the zero-copy example. 
However, you will notice that we use standard GPU memory for the partial results. 
As always, this memory gets allocated using cudaMalloc().

    int     size = data->size;

    float   *a, *b, c, *partial_c;

    float   *dev_a, *dev_b, *dev_partial_c;

    // allocate memory on the CPU side

    a = data->a;

    b = data->b;

    partial_c = (float*)malloc( blocksPerGrid*sizeof(float) );

    HANDLE_ERROR( cudaHostGetDevicePointer( &dev_a, a, 0 ) );

    HANDLE_ERROR( cudaHostGetDevicePointer( &dev_b, b, 0 ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_partial_c,

                              blocksPerGrid*sizeof(float) ) );

    // offset 'a' and 'b' to where this GPU is gets it data

    dev_a += data->offset;

    dev_b += data->offset;
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At this point, we’re pretty much ready to go, so we launch our kernel and copy our 
results back from the GPU.

    dot<<<blocksPerGrid,threadsPerBlock>>>( size, dev_a, dev_b,

                                            dev_partial_c );

    // copy the array 'c' back from the GPU to the CPU

    HANDLE_ERROR( cudaMemcpy( partial_c, dev_partial_c,

                              blocksPerGrid*sizeof(float),

                              cudaMemcpyDeviceToHost ) );

We conclude as we always have in our dot product example by summing  
our partial results on the CPU, freeing our temporary storage, and returning  
to main().

    // finish up on the CPU side

    c = 0;

    for (int i=0; i<blocksPerGrid; i++) {

        c += partial_c[i];

    }

    HANDLE_ERROR( cudaFree( dev_partial_c ) );

    // free memory on the CPU side

    free( partial_c );

    data->returnValue = c;

    return 0;

}

Chapter Review11.5 
We have seen some new types of host memory allocations, all of which get 
 allocated with a single call, cudaHostAlloc(). Using a combination of this  
one entry point and a set of argument flags, we can allocate memory as any 
combination of zero-copy, portable, and/or write-combined. We used zero-copy 
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buffers to avoid making explicit copies of data to and from the GPU, a maneuver 
that potentially speeds up a wide class of applications. Using a support library for 
threading, we manipulated multiple GPUs from the same application, allowing 
our dot product computation to be performed across multiple devices. Finally, 
we saw how multiple GPUs could share pinned memory allocations by allo-
cating them as portable pinned memory. Our last example used portable pinned 
memory, multiple GPUs, and zero-copy buffers in order to demonstrate a turbo-
charged version of the dot product we started toying with back in Chapter 5. As 
multiple-device systems gain popularity, these techniques should serve you well 
in harnessing the computational power of your target platform in its entirety.
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Chapter 12

the Final Countdown

Congratulations! We hope you’ve enjoyed learning about CUDA C and experi-
menting some with GPU computing. It’s been a long trip, so let’s take a moment 
to review where we started and how much ground we’ve covered. Starting with 
a background in C or C++ programming, we’ve learned how to use the CUDA 
runtime’s angle bracket syntax to easily launch multiple copies of kernels across 
any number of multiprocessors. We expanded these concepts to use collec-
tions of threads and blocks, operating on arbitrarily large inputs. These more 
complex launches exploited interthread communication using the GPU’s special, 
on-chip shared memory, and they employed dedicated synchronization primitives 
to ensure correct operation in an environment that supports (and encourages) 
 thousands upon thousands of parallel threads.

Armed with basic concepts about parallel programming using CUDA C on 
NVIDIA’s CUDA Architecture, we explored some of the more advanced concepts 
and APIs that NVIDIA provides. The GPU’s dedicated graphics hardware proves 
useful for GPU computing, so we learned how to exploit texture memory to accel-
erate some common patterns of memory access. Because many users add GPU 
computing to their interactive graphics applications, we explored the interopera-
tion of CUDA C kernels with industry-standard graphics APIs such as OpenGL 
and DirectX. Atomic operations on both global and shared memory allowed safe, 
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multithreaded access to common memory locations. Moving steadily into more 
and more advanced topics, streams enabled us to keep our entire system as busy 
as possible, allowing kernels to execute simultaneously with memory copies 
between the host and GPU. Finally, we looked at the ways in which we could allo-
cate and use zero-copy memory to accelerate applications on integrated GPUs. 
Moreover, we learned to initialize multiple devices and allocate portable pinned 
memory in order to write CUDA C that fully utilizes increasingly common, multi-
GPU environments.

Chapter Objectives12.1 
Through the course of this chapter, you will accomplish the following:

You will learn about some of the tools available to aid your CUDA C development.• 

You will learn about additional written and code resources to take your CUDA C • 
development to the next level.

CUDA Tools12.2 
Through the course of this book, we have relied upon several components of 
the CUDA C software system. The applications we wrote made heavy use of the 
CUDA C compiler in order to convert our CUDA C kernels into code that could be 
executed on NVIDIA GPUs. We also used the CUDA runtime in order to perform 
much of the setup and dirty work behind launching kernels and communicating 
with the GPU. The CUDA runtime, in turn, uses the CUDA driver to talk directly 
to the hardware in your system. In addition to these components that we have 
already used at length, NVIDIA makes available a host of other software in order 
to ease the development of CUDA C applications. This section does not serve well 
as a user’s manual to these products, but rather, it aims solely to inform you of 
the existence and utility of these packages.

cudA toolKIt12.2.1 

You almost certainly already have the CUDA Toolkit collection of software on 
your development machine. We can be so sure of this because the set of CUDA 
C compiler tools comprises one of the principal components of this package. If 
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you don’t have the CUDA Toolkit on your machine, then it’s a veritable certainty 
that you haven’t tried to write or compile any CUDA C code. We’re on to you now, 
sucker! Actually, this is no big deal (but it does make us wonder why you’ve read 
this entire book). On the other hand, if you have been working through the exam-
ples in this book, then you should possess the libraries we’re about to discuss.

CUFFT12.2.2 

The CUDA Toolkit comes with two very important utility libraries if you plan to 
pursue GPU computing in your own applications. First, NVIDIA provides a tuned 
Fast Fourier Transform library known as CUFFT. As of release 3.0, the CUFFT 
library supports a number of useful features, including the following:

One-, two-, and three-dimensional transforms of both real-valued and • 
complex-valued input data

Batch execution for performing multiple one-dimensional transforms in • 
parallel

2D and 3D transforms with sizes ranging from 2 to 16,384 in any dimension• 

1D transforms of inputs up to 8 million elements in size• 

In-place and out-of-place transforms for both real-valued and complex-• 
valued data

NVIDIA provides the CUFFT library free of charge with an accompanying license 
that allows for use in any application, regardless of whether it’s for personal, 
academic, or professional development.

CUBLAS12.2.3 

In addition to a Fast Fourier Transform library, NVIDIA also provides a library of 
linear algebra routines that implements the well-known package of Basic Linear 
Algebra Subprograms (BLAS). This library, named CUBLAS, is also freely avail-
able and supports a large subset of the full BLAS package. This includes versions 
of each routine that accept both single- and double-precision inputs as well 
as real- and complex-valued data. Because BLAS was originally a FORTRAN-
implemented library of linear algebra routines, NVIDIA attempts to maximize 
compatibility with the requirements and expectations of these implementations. 
Specifically, the CUBLAS library uses a column-major storage layout for arrays, 
rather than the row-major layout natively used by C and C++. In practice, this is 
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not typically a concern, but it does allow for current users of BLAS to adapt their 
applications to exploit the GPU-accelerated CUBLAS with minimal effort. NVIDIA 
also distributes FORTRAN bindings to CUBLAS in order to demonstrate how to 
link existing FORTRAN applications to CUDA libraries.

nvIdIA GPu comPutInG sdK12.2.4 

Available separately from the NVIDIA drivers and CUDA Toolkit, the optional GPU 
Computing SDK download contains a package of dozens and dozens of sample 
GPU computing applications. We mentioned this SDK earlier in the book because 
its samples serve as an excellent complement to the material we’ve covered in 
the first 11 chapters. But if you haven’t taken a look yet, NVIDIA has geared these 
samples toward varying levels of CUDA C competency as well as spreading them 
over a broad spectrum of subject material. The samples are roughly categorized 
into the following sections:

CUDA Basic Topics

CUDA Advanced Topics 

CUDA Systems Integration 

Data-Parallel Algorithms 

Graphics Interoperability 

Texture 

Performance Strategies 

Linear Algebra 

Image/Video Processing

Computational Finance 

Data Compression 

Physically-Based Simulation

The examples work on any platform that CUDA C works on and can serve as 
excellent jumping-off points for your own applications. For readers who have 
considerable experience in some of these areas, we warn you against expecting 
to see state-of-the-art implementations of your favorite algorithms in the NVIDIA 
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GPU Computing SDK. These code samples should not be treated as production-
worthy library code but rather as educational illustrations of functioning CUDA C 
programs, not unlike the examples in this book.

NVIDIA PERFORMANCE PRIMITIVES12.2.5 

In addition to the routines offered in the CUFFT and CUBLAS libraries, NVIDIA 
also maintains a library of functions for performing CUDA-accelerated data 
processing known as the NVIDIA Performance Primitives (NPP). Currently, NPP’s 
initial set of functionality focuses specifically on imaging and video processing 
and is widely applicable for developers in these areas. NVIDIA intends for NPP to 
evolve over time to address a greater number of computing tasks in a wider range 
of domains. If you have an interest in high-performance imaging or video applica-
tions, you should make it a priority to look into NPP, available as a free download 
at www.nvidia.com/object/npp.html (or accessible from your favorite web search 
engine).

DEBUGGING CUDA C12.2.6 

We have heard from a variety of sources that, in rare instances, computer 
software does not work exactly as intended when first executed. Some code 
computes incorrect values, some fails to terminate execution, and some 
code even puts the computer into a state that only a flip of the power switch 
can remedy. Although having clearly never written code like this personally, 
the authors of this book recognize that some software engineers may desire 
resources to debug their CUDA C kernels. Fortunately, NVIDIA provides tools to 
make this painful process significantly less troublesome.

CUDA-GDB

A tool known as CUDA-GDB is one of the most useful CUDA downloads available 
to CUDA C programmers who develop their code on Linux-based systems. NVIDIA 
extended the open source GNU debugger (gdb) to transparently support debug-
ging device code in real time while maintaining the familiar interface of gdb. Prior 
to CUDA-GDB, there existed no good way to debug device code outside of using 
the CPU to simulate the way in which it was expected to run. This method yielded 
extremely slow debugging, and in fact, it was frequently a very poor approxi-
mation of the exact GPU execution of the kernel. NVIDIA’s CUDA-GDB enables 
programmers to debug their kernels directly on the GPU, affording them all of 

www.nvidia.com/object/npp.html
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the control that they’ve grown accustomed to with CPU debuggers. Some of the 
highlights of CUDA-GDB include the following:

Viewing CUDA state, such as information regarding installed GPUs and their • 
capabilities

Setting breakpoints in CUDA C source code• 

Inspecting GPU memory, including all global and shared memory• 

Inspecting the blocks and threads currently resident on the GPU• 

Single-stepping a warp of threads• 

Breaking into currently running applications, including hung or deadlocked • 
applications

Along with the debugger, NVIDIA provides the CUDA Memory Checker whose 
functionality can be accessed through CUDA-GDB or the stand-alone tool, 
 cuda-memcheck. Because the CUDA Architecture includes a sophisticated 
memory management unit built directly into the hardware, all illegal memory 
accesses will be detected and prevented by the hardware. As a result of a 
memory violation, your program will cease functioning as expected, so you will 
certainly want visibility into these types of errors. When enabled, the CUDA 
Memory Checker will detect any global memory violations or misaligned global 
memory accesses that your kernel attempts to make, reporting them to you in a 
far more helpful and verbose manner than previously possible. 

NVIDIA PARALLEL NSIGHT

Although CUDA-GDB is a mature and fantastic tool for debugging your CUDA 
C kernels on hardware in real time, NVIDIA recognizes that not every devel-
oper is over the moon about Linux. So, unless Windows users are hedging their 
bets by saving up to open their own pet stores, they need a way to debug their 
applications, too. Toward the end of 2009, NVIDIA introduced NVIDIA Parallel 
Nsight (originally code-named Nexus), the first integrated GPU/CPU debugger 
for Microsoft Visual Studio. Like CUDA-GDB, Parallel Nsight supports debug-
ging CUDA applications with thousands of threads. Users can place breakpoints 
anywhere in their CUDA C source code, including breakpoints that trigger on 
writes to arbitrary memory locations. They can inspect GPU memory directly 
from the Visual Studio Memory window and check for out-of-bounds memory 
accesses. This tool has been made publicly available in a beta program as of 
press time, and the final version should be released shortly.



cudA tools

243

12.2 CUDA TOOLS

CUDA VISUAL PROFILER12.2.7 

We often tout the CUDA Architecture as a wonderful foundation for high-
 performance computing applications. Unfortunately, the reality is that after 
ferreting out all the bugs from your applications, even the most well-meaning 
“high-performance computing” applications are more accurately referred to as 
simply “computing” applications. We have often been in the position where we 
wonder, “Why in the Sam Hill is my code performing so poorly?” In situations like 
this, it helps to be able to execute the kernels in question under the watchful gaze 
of a profiling tool. NVIDIA provides just such a tool, available as a separate down-
load on the CUDA Zone website. Figure 12.1 shows the Visual Profiler being used 
to compare two implementations of a matrix transpose operation. Despite not 
looking at a line of code, it becomes quite easy to determine that both memory 
and instruction throughput of the transpose() kernel outstrip that of the 
transpose_naive() kernel. (But then again, it would be unfair to expect much 
more from a function with naive in the name.)

Figure 12.1 The CUDA Visual Profiler being used to profile a matrix transpose 
application
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The CUDA Visual Profiler will execute your application, examining special perfor-
mance counters built into the GPU. After execution, the profiler can compile data 
based on these counters and present you with reports based on what it observed. 
It can verify how long your application spends executing each kernel as well 
as determine the number of blocks launched, whether your kernel’s memory 
accesses are coalesced, the number of divergent branches the warps in your code 
execute, and so on. We encourage you to look into the CUDA Visual Profiler if you 
have some subtle performance problems in need of resolution.

Written Resources12.3 
If you haven’t already grown queasy from all the prose in this book, then it’s 
possible you might actually be interested in reading more. We know that some of 
you are more likely to want to play with code in order to continue your learning, 
but for the rest of you, there are additional written resources to maintain your 
growth as a CUDA C coder. 

PROGRAMMING MASSIVELY PARALLEL PROCESSORS: A 12.3.1 
HANDS-ON APPROACH

If you read Chapter 1, we assured you that this book was most decidedly not a 
textbook on parallel architectures. Sure, we bandied about terms such as multi-
processor and warp, but this book strives to teach the softer side of programming 
with CUDA C and its attendant APIs. We learned the CUDA C language within the 
programming model set forth in the NVIDIA CUDA Programming Guide, largely 
ignoring the way NVIDIA’s hardware actually accomplishes the tasks we give it. 

But to truly become an advanced, well-rounded CUDA C programmer, you will 
need a more intimate familiarity with the CUDA Architecture and some of the 
nuances of how NVIDIA GPUs work behind the scenes. To accomplish this, 
we recommend working your way through Programming Massively Parallel 
Processors: A Hands-on Approach. To write it, David Kirk, formerly NVIDIA’s chief 
scientist, collaborated with Wen-mei W. Hwu, the W.J. Sanders III chairman in 
electrical and computer engineering at University of Illinois. You’ll encounter 
a number of familiar terms and concepts, but you will learn about the gritty 
details of NVIDIA’s CUDA Architecture, including thread scheduling and latency 
tolerance, memory bandwidth usage and efficiency, specifics on floating-point 
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handling, and much more. The book also addresses parallel programming in 
a more general sense than this book, so you will gain a better overall under-
standing of how to engineer parallel solutions to large, complex problems.

cudA u12.3.2 

Some of us were unlucky enough to have attended university prior to the exciting 
world of GPU computing. For those who are fortunate enough to be attending 
college now or in the near future, about 300 universities across the world 
currently teach courses involving CUDA. But before you start a crash diet to fit 
back into your college gear, there’s an alternative! On the CUDA Zone website, 
you will find a link for CUDA U, which is essentially an online university for CUDA 
education. Or you can navigate directly there with the URL www.nvidia.com/
object/cuda_education. Although you will be able to learn quite a bit about GPU 
computing if you attend some of the online lectures at CUDA U, as of press time 
there are still no online fraternities for partying after class.

unIversIty course mAterIAls

Among the myriad sources of CUDA education, one of the highlights includes an 
entire course from the University of Illinois on programming in CUDA C. NVIDIA 
and the University of Illinois provide this content free of charge in the M4V video 
format for your iPod, iPhones, or compatible video players. We know what you’re 
thinking: “Finally, a way to learn CUDA while I wait in line at the Department of 
Motor Vehicles!” You may also be wondering why we waited until the very end 
of this book to inform you of the existence of what is essentially a movie version 
of this book. We’re sorry for holding out on you, but the movie is hardly ever as 
good as the book anyway, right? In addition to actual course materials from the 
University of Illinois and from the University of California Davis, you will also find 
materials from CUDA Training Podcasts and links to third-party training and 
consultancy services.

DR. DOBB’S 

For more than 30 years, Dr. Dobb’s has covered nearly every major develop-
ment in computing technology, and NVIDIA’s CUDA is no exception. As part of an 
ongoing series, Dr. Dobb’s has published an extensive series of articles cutting a 
broad swath through the CUDA landscape. Entitled CUDA, Supercomputing for the 
Masses, the series starts with an introduction to GPU computing and progresses 

www.nvidia.com/object/cuda_education
www.nvidia.com/object/cuda_education
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quickly from a first kernel to other pieces of the CUDA programming model. The 
articles in Dr. Dobb’s cover error handling, global memory performance, shared 
memory, the CUDA Visual Profiler, texture memory, CUDA-GDB, and the CUDPP 
library of data-parallel CUDA primitives, as well as many other topics. This series 
of articles is an excellent place to get additional information about some of the 
material we’ve attempted to convey in this book. Furthermore, you’ll find prac-
tical information concerning some of the tools that we’ve only had time to glance 
over in this text, such as the profiling and debugging options available to you. The 
series of articles is linked from the CUDA Zone web page but is readily accessible 
through a web search for Dr Dobbs CUDA.

NVIDIA FORUMS12.3.3 

Even after digging around all of NVIDIA’s documentation, you may find your-
self with an unanswered or particularly intriguing question. Perhaps you’re 
wondering whether anyone else has seen some funky behavior you’re expe-
riencing. Or maybe you’re throwing a CUDA celebration party and wanted to 
assemble a group of like-minded individuals. For anything you’re interested in 
asking, we strongly recommend the forums on NVIDIA’s website. Located at 
http://forums.nvidia.com, the forums are a great place to ask questions of other 
CUDA users. In fact, after reading this book, you’re in a position to potentially 
help others if you want! NVIDIA employees regularly prowl the forums, too, so 
the trickiest questions will prompt authoritative advice right from the source. We 
also love to get suggestions for new features and feedback on the good, bad, and 
ugly things that we at NVIDIA do.

Code Resources12.4 
Although the NVIDIA GPU Computing SDK is a treasure trove of how-to samples, 
it’s not designed to be used for much more than pedagogy. If you’re hunting for 
production-caliber, CUDA-powered libraries or source code, you’ll need to look a 
bit further. Fortunately, there is a large community of CUDA developers who have 
produced top-notch solutions. A couple of these tools and libraries are presented 
here, but you are encouraged to search the Web for whatever solutions you need. 
And hey, maybe you’ll contribute some of your own to the CUDA C community 
some day!

http://forums.nvidia.com
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CUDA DATA PARALLEL PRIMITIVES LIBRARY12.4.1 

NVIDIA, with the help of researchers at the University of California Davis, has 
released a library known as the CUDA Data Parallel Primitives Library (CUDPP). 
CUDPP, as the name indicates, is a library of data-parallel algorithm primitives. 
Some of these primitives include parallel prefix-sum (scan), parallel sort, and 
parallel reduction. Primitives such as these form the foundation of a wide variety 
of data-parallel algorithms, including sorting, stream compaction, building 
data structures, and many others. If you’re looking to write an even moderately 
complex algorithms, chances are good that either CUDPP already has what you 
need or it can get you significantly closer to where you want to be. Download it at 
http://code.google.com/p/cudpp.

culAtools12.4.2 

As we mentioned in Section 12.1.3: CUBLAS, NVIDIA provides an implementation 
of the BLAS packaged along with the CUDA Toolkit download. For readers who 
need a broader solution for linear algebra, take a look at EM Photonics’ CUDA 
implementation of the industry-standard Linear Algebra Package (LAPACK). 
Its LAPACK implementation is known as CULAtools and offers more complex 
linear algebra routines that are built on NVIDIA’s CUBLAS technology. The 
freely available Basic package offers LU decomposition, QR factorization, linear 
system solver, and singular value decomposition, as well as least squares and 
constrained least squares solvers. You can obtain the Basic download at  
www.culatools.com/versions/basic. You will also notice that EM Photonics offers 
Premium and Commercial licenses, which contain a far greater fraction of the 
LAPACK routines, as well as licensing terms that will allow you to distribute your 
own commercial applications based on CULAtools.

lAnGuAGe wrAPPers12.4.3 

This book has primarily been concerned with C and C++, but clearly hundreds 
of projects exist that don’t employ these languages. Fortunately, third parties 
have written wrappers to allow access to CUDA technology from languages not 
officially supported by NVIDIA. NVIDIA itself provides FORTRAN bindings for 
its CUBLAS library, but you can also find Java bindings for several of the CUDA 
libraries at www.jcuda.org. Likewise, Python wrappers to allow the use of CUDA C 
kernels from Python applications are available from the PyCUDA project at  

www.culatools.com/versions/basic
www.jcuda.org
http://code.google.com/p/cudpp
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http://mathema.tician.de/software/pycuda. Finally, there are bindings for  
the Microsoft .NET environment available from the CUDA.NET project at  
www.hoopoe-cloud.com/Solutions/CUDA.NET. 

Although these projects are not officially supported by NVIDIA, they have been 
around for several versions of CUDA, are all freely available, and each has many 
successful customers. The moral of this story is, if your language of choice (or 
your boss’s choice) is not C or C++, you should not rule out GPU computing until 
you’ve first looked to see whether the necessary bindings are available. 

Chapter Review12.5 
And there you have it. Even after 11 chapters of CUDA C, there are still loads of 
resources to download, read, watch, and compile. This is a remarkably interesting 
time to be learning GPU computing, as the era of heterogeneous computing 
platforms matures. We hope that you have enjoyed learning about one of the 
most pervasive parallel programming environments in existence. Moreover, we 
hope that you leave this experience excited about the possibilities to develop new 
and exciting means for interacting with computers and for processing the ever-
increasing amount of information available to your software. It’s your ideas and the 
amazing technologies you develop that will push GPU computing to the next level. 

www.hoopoe-cloud.com/Solutions/CUDA.NET
http://mathema.tician.de/software/pycuda
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Appendix

Advanced Atomics

Chapter 9 covered some of the ways in which we can use atomic operations to 
enable hundreds of threads to safely make concurrent modifications to shared 
data. In this appendix, we’ll look at an advanced method for using atomics to 
implement locking data structures. On its surface, this topic does not seem much 
more complicated than anything else we’ve examined. And in reality, this is accu-
rate. You’ve learned a lot of complex topics through this book, and locking data 
structures are no more challenging than these. So, why is this material hiding in 
the appendix? We don’t want to reveal any spoilers, so if you’re intrigued, read on, 
and we’ll discuss this through the course of the appendix.
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Dot Product RevisitedA.1 
In Chapter 5, we looked at the implementation of a vector dot product using CUDA 
C. This algorithm was one of a large family of algorithms known as reductions. If 
you recall, the algorithm computed the dot product of two input vectors by doing 
the following:

Each thread in each block multiplies two corresponding elements of the input 1. 
vectors and stores the products in shared memory.

Although a block has more than one product, a thread adds two of the 2. 
products and stores the result back to shared memory. Each step results 
in half as many values as it started with (this is where the term reduction 
comes from)

When every block has a final sum, each one writes its value to global memory 3. 
and exits.

If the kernel ran with 4. N parallel blocks, the CPU sums these remaining N 
values to generate the final dot product.

This high-level look at the dot product algorithm is intended to be review, so if 
it’s been a while or you’ve had a couple glasses of Chardonnay, it may be worth 
the time to review Chapter 5. If you feel comfortable enough with the dot product 
code to continue, draw your attention to step 4 in the algorithm. Although it 
doesn’t involve copying much data to the host or performing many calcula-
tions on the CPU, moving the computation back to the CPU to finish is indeed as 
awkward as it sounds. 

But it’s more than an issue of an awkward step to the algorithm or the inelegance 
of the solution. Consider a scenario where a dot product computation is just one 
step in a long sequence of operations. If you want to perform every operation on 
the GPU because your CPU is busy with other tasks or computations, you’re out 
of luck. As it stands, you’ll be forced to stop computing on the GPU, copy inter-
mediate results back to the host, finish the computation with the CPU, and finally 
upload that result back to the GPU and resume computing with your next kernel.

Since this is an appendix on atomics and we have gone to such lengths to explain 
what a pain our original dot product algorithm is, you should see where we’re 
heading. We intend to fix our dot product using atomics so the entire computa-
tion can stay on the GPU, leaving your CPU free to perform other tasks. Ideally, 
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instead of exiting the kernel in step 3 and returning to the CPU in step 4, we want 
each block to add its final result to a total in global memory. If each value were 
added atomically, we would not have to worry about potential collisions or inde-
terminate results. Since we have already used an atomicAdd() operation in the 
histogram operation, this seems like an obvious choice.

Unfortunately, prior to compute capability 2.0, atomicAdd()operated only 
on integers. Although this might be fine if you plan to compute dot products of 
vectors with integer components, it is significantly more common to use floating-
point components. However, the majority of NVIDIA hardware does not support 
atomic arithmetic on floating-point numbers! But there’s a reasonable explana-
tion for this, so don’t throw your GPU in the garbage just yet.

Atomic operations on a value in memory guarantee only that each thread’s read-
modify-write sequence will complete without other threads reading or writing the 
target value while in process. There is no stipulation about the order in which the 
threads will perform their operations, so in the case of three threads performing 
addition, sometimes the hardware will perform (A+B)+C and sometimes it 
will compute A+(B+C). This is acceptable for integers because integer math is 
associative, so (A+B)+C = A+(B+C). Floating-point arithmetic is not associa-
tive because of the rounding of intermediate results, so (A+B)+C often does 
not equal A+(B+C). As a result, atomic arithmetic on floating-point values is of 
dubious utility because it gives rise to nondeterministic results in a highly multi-
threaded environment such as on the GPU. There are many applications where 
it is simply unacceptable to get two different results from two runs of an appli-
cation, so the support of floating-point atomic arithmetic was not a priority for 
earlier hardware. 

However, if we are willing to tolerate some nondeterminism in the results, we can 
still accomplish the reduction entirely on the GPU. But we’ll first need to develop 
a way to work around the lack of atomic floating-point arithmetic. The solution 
will still use atomic operations, but not for the arithmetic itself.

A.1.1 ATOMIC LOCKS

The atomicAdd() function we used to build GPU histograms performed a 
read-modify-write operation without interruption from other threads. At a low 
level, you can imagine the hardware locking the target memory location while 
this operation is underway, and while locked, no other threads can read or write 
the value at the location. If we had a way of emulating this lock in our CUDA C 
kernels, we could perform arbitrary operations on an associated memory location 
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or data structure. The locking mechanism itself will operate exactly like a typical 
cPu mutex. If you are unfamiliar with mutual exclusion (mutex), don’t fret. It’s not 
any more complicated than the things you’ve already learned.

The basic idea is that we allocate a small piece memory to be used as a mutex. 
The mutex will act like something of a traffic signal that governs access to some 
resource. The resource could be a data structure, a buffer, or simply a memory 
location we want to modify atomically. When a thread reads a 0 from the mutex, 
it interprets this value as a “green light” indicating that no other thread is using 
the memory. Therefore, the thread is free to lock the memory and make whatever 
changes it desires, free of interference from other threads. To lock the memory 
location in question, the thread writes a 1 to the mutex. This 1 will act as a “red 
light” for potentially competing threads. The competing threads must then wait 
until the owner has written a 0 to the mutex before they can attempt to modify the 
locked memory. 

A simple code sequence to accomplish this locking process might look like this:

    void lock( void ) {

        if( *mutex == 0 ) {

            *mutex = 1; //store a 1 to lock

        }

    }

Unfortunately, there’s a problem with this code. Fortunately, it’s a familiar 
problem: What happens if another thread writes a 1 to the mutex after our thread 
has read the value to be zero? That is, both threads check the value at mutex 
and see that it’s zero. They then both write a 1 to this location to signify to other 
threads that the structure is locked and unavailable for modification. After doing 
so, both threads think they own the associated memory or data structure and 
begin making unsafe modifications. Catastrophe ensues! 

The operation we want to complete is fairly simple: We need to compare the value 
at mutex to 0 and store a 1 at that location if and only if the mutex was 0. To 
accomplish this correctly, this entire operation needs to be performed atomically so 
we know that no other thread can interfere while our thread examines and updates 
the value at mutex. In CUDA C, this operation can be performed with the function 
atomicCAS(), an atomic compare-and-swap. The function  atomicCAS() takes 
a pointer to memory, a value with which to compare the value at that location, and a 
value to store in that location if the comparison is successful. Using this operation, 
we can implement a GPU lock function as follows:
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    __device__ void lock( void ) {

        while( atomicCAS( mutex, 0, 1 ) != 0 );

    }

The call to atomicCAS() returns the value that it found at the address mutex. 
As a result, the while() loop will continue to run until atomicCAS() sees a 0 
at mutex. When it sees a 0, the comparison is successful, and the thread writes 
a 1 to mutex. Essentially, the thread will spin in the while() loop until it has 
successfully locked the data structure. We’ll use this locking mechanism to 
implement our GPU hash table. But first, we dress the code up in a structure so it 
will be cleaner to use in the dot product application:

struct Lock {

    int *mutex;

    Lock( void ) {

        int state = 0;

        HANDLE_ERROR( cudaMalloc( (void**)& mutex,

                              sizeof(int) ) );

        HANDLE_ERROR( cudaMemcpy( mutex, &state, sizeof(int),

                              cudaMemcpyHostToDevice ) );

    }

    ~Lock( void ) {

        cudaFree( mutex );

    }

    __device__ void lock( void ) {

        while( atomicCAS( mutex, 0, 1 ) != 0 );

    }

    __device__ void unlock( void ) {

        atomicExch( mutex, 1 );

    }

};

Notice that we restore the value of mutex with atomicExch( mutex, 1 ). 
The function atomicExch() reads the value that is located at mutex, exchanges 
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it with the second argument (a 1 in this case), and returns the original value it 
read. Why would we use an atomic function for this rather than the more obvious 
method to reset the value at mutex?

    *mutex = 1;

If you’re expecting some subtle, hidden reason why this method fails, we hate to 
disappoint you, but this would work as well. So, why not use this more obvious 
method? Atomic transactions and generic global memory operations follow 
different paths through the GPU. Using both atomics and standard global memory 
operations could therefore lead to an unlock() seeming out of sync with a 
subsequent attempt to lock() the mutex. The behavior would still be function-
ally correct, but to ensure consistently intuitive behavior from the application’s 
perspective, it’s best to use the same pathway for all accesses to the mutex. 
Because we’re required to use an atomic to lock the resource, we have chosen to 
also use an atomic to unlock the resource.

A.1.2 DOT PRODUCT REDUX: ATOMIC LOCKS

The only piece of our earlier dot product example that we endeavor to change 
is the final CPU-based portion of the reduction. In the previous section, we 
described how we implement a mutex on the GPU. The Lock structure that 
implements this mutex is located in lock.h and included at the beginning of our 
improved dot product example:

#include "../common/book.h"

#include "lock.h"

#define imin(a,b) (a<b?a:b)

const int N = 33 * 1024 * 1024;

const int threadsPerBlock = 256;

const int blocksPerGrid =

            imin( 32, (N+threadsPerBlock-1) / threadsPerBlock );

With two exceptions, the beginning of our dot product kernel is identical to the 
kernel we used in Chapter 5. Both exceptions involve the kernel’s signature:

    __global__ void dot( Lock lock, float *a, float *b, float *c )
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In our updated dot product, we pass a Lock to the kernel in addition to input 
vectors and the output buffer. The Lock will govern access to the output buffer 
during the final accumulation step. The other change is not noticeable from the 
signature but involves the signature. Previously, the float *c argument was a 
buffer for N floats where each of the N blocks could store its partial result. This 
buffer was copied back to the CPU to compute the final sum. Now, the argument 
c no longer points to a temporary buffer but to a single floating-point value that 
will store the dot product of the vectors in a and b. But even with these changes, 
the kernel starts out exactly as it did in Chapter 5:

__global__ void dot( Lock lock, float *a,

                     float *b, float *c ) {

    __shared__ float cache[threadsPerBlock];

    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    int cacheIndex = threadIdx.x;

    float   temp = 0;

    while (tid < N) {

        temp += a[tid] * b[tid];

        tid += blockDim.x * gridDim.x;

    }

    // set the cache values

    cache[cacheIndex] = temp;

    

    // synchronize threads in this block

    __syncthreads();

    // for reductions, threadsPerBlock must be a power of 2

    // because of the following code

    int i = blockDim.x/2;

    while (i != 0) {

        if (cacheIndex < i)

            cache[cacheIndex] += cache[cacheIndex + i];

        __syncthreads();

        i /= 2;

    }
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At this point in execution, the 256 threads in each block have summed their 256 
pairwise products and computed a single value that’s sitting in cache[0]. Each 
thread block now needs to add its final value to the value at c. To do this safely, 
we’ll use the lock to govern access to this memory location, so each thread needs 
to acquire the lock before updating the value *c. After adding the block’s partial 
sum to the value at c, it unlocks the mutex so other threads can accumulate their 
values. After adding its value to the final result, the block has nothing remaining 
to compute and can return from the kernel.

    if (cacheIndex == 0) {

        lock.lock();

        *c += cache[0];

        lock.unlock();

    }

}

The main() routine is very similar to our original implementation, though it does 
have a couple differences. First, we no longer need to allocate a buffer for partial 
results as we did in Chapter 5. We now allocate space for only a single floating-
point result:

int main( void ) {

    float   *a, *b, c = 0;

    float   *dev_a, *dev_b, *dev_c;

    // allocate memory on the CPU side

    a = (float*)malloc( N*sizeof(float) );

    b = (float*)malloc( N*sizeof(float) );

    // allocate the memory on the GPU

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a,

                              N*sizeof(float) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_b,

                              N*sizeof(float) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_c,

                              sizeof(float) ) );
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As we did in Chapter 5, we initialize our input arrays and copy them to the 
GPU. But you’ll notice an additional copy in this example: We’re also copying 
a zero to dev_c, the location that we intend to use to accumulate our final dot 
product. Since each block wants to read this value, add its partial sum, and 
store the result back, we need the initial value to be zero in order to get the 
correct result.

    // fill in the host memory with data

    for (int i=0; i<N; i++) {

        a[i] = i;

        b[i] = i*2;

    }

    // copy the arrays 'a' and 'b' to the GPU

    HANDLE_ERROR( cudaMemcpy( dev_a, a, N*sizeof(float),

                              cudaMemcpyHostToDevice ) );

    HANDLE_ERROR( cudaMemcpy( dev_b, b, N*sizeof(float),

                              cudaMemcpyHostToDevice ) ); 

    HANDLE_ERROR( cudaMemcpy( dev_c, &c, sizeof(float),

                              cudaMemcpyHostToDevice ) ); 

All that remains is declaring our Lock, invoking the kernel, and copying the 
result back to the CPU.

    Lock    lock;

    dot<<<blocksPerGrid,threadsPerBlock>>>( lock, dev_a,

                                            dev_b, dev_c );

    // copy c back from the GPU to the CPU

    HANDLE_ERROR( cudaMemcpy( &c, dev_c,

                              sizeof(float),

                              cudaMemcpyDeviceToHost ) );
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In Chapter 5, this is when we would do a final for() loop to add the partial 
sums. Since this is done on the GPU using atomic locks, we can skip right to the 
answer-checking and cleanup code:

    #define sum_squares(x)  (x*(x+1)*(2*x+1)/6)

    printf( "Does GPU value %.6g = %.6g?\n", c,

             2 * sum_squares( (float)(N - 1) ) );

    // free memory on the GPU side

    cudaFree( dev_a );

    cudaFree( dev_b );

    cudaFree( dev_c );

    // free memory on the CPU side

    free( a );

    free( b );

}

Because there is no way to precisely predict the order in which each block will 
add its partial sum to the final total, it is very likely (almost certain) that the final 
result will be summed in a different order than the CPU will sum it. Because of 
the nonassociativity of floating-point addition, it’s therefore quite probable that 
the final result will be slightly different between the GPU and CPU. There is not 
much that can be done about this without adding a nontrivial chunk of code to 
ensure that the blocks acquire the lock in a deterministic order that matches the 
summation order on the CPU. If you feel extraordinarily motivated, give this a try. 
Otherwise, we’ll move on to see how these atomic locks can be used to imple-
ment a multithreaded data structure.

Implementing a Hash TableA.2 
The hash table is one of the most important and commonly used data structures 
in computer science, playing an important role in a wide variety of applications. 
For readers not already familiar with hash tables, we’ll provide a quick primer 
here. The study of data structures warrants more in-depth study than we intend 
to provide, but in the interest of making forward progress, we will keep this brief. 
If you already feel comfortable with the concepts behind hash tables, you should 
skip to the hash table implementation in Section A.2.2: A CPU Hash Table.
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HASH TABLE OVERVIEWA.2.1 

A hash table is essentially a structure that is designed to store pairs of keys and 
values. For example, you could think of a dictionary as a hash table. Every word in 
the dictionary is a key, and each word has a definition associated with it. The defi-
nition is the value associated with the word, and thus every word and definition in 
the dictionary form a key/value pair. For this data structure to be useful, though, 
it is important that we minimize the time it takes to find a particular value if we’re 
given a key. In general, this should be a constant amount of time. That is, the time 
to look up a value given a key should be the same, regardless of how many key/
value pairs are in the hash table.

At an abstract level, our hash table will place values in “buckets” based on the 
value’s corresponding key. The method by which we map keys to buckets is often 
called the hash function. A good hash function will map the set of possible keys 
uniformly across all the buckets because this will help satisfy our requirement 
that it take constant time to find any value, regardless of the number of values 
we’ve added to the hash table. 

For example, consider our dictionary hash table. One obvious hash function would 
involve using 26 buckets, one for each letter of the alphabet. This simple hash 
function might simply look at the first letter of the key and put the value in one 
of the 26 buckets based on this letter. Figure A.1 shows how this hash function 
would assign few sample words.

Hash Buckets

Avocado

Camera

Baseball

Grasshopper

Electrical

B
A

D
C

F
E

H
G

Figure A.1 Hashing of words into buckets
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Given what we know about the distribution of words in the English language, this 
hash function leaves much to be desired because it will not map words uniformly 
across the 26 buckets. Some of the buckets will contain very few key/value pairs, 
and some of the buckets will contain a large number of pairs. Accordingly, it 
will take much longer to find the value associated with a word that begins with 
a common letter such as S than it would take to find the value associated with a 
word that begins with the letter X. Since we are looking for hash functions that 
will give us constant-time retrieval of any value, this consequence is fairly unde-
sirable. An immense amount of research has gone into the study of hash func-
tions, but even a brief survey of these techniques is beyond the scope of this book. 

The last component of our hash table data structure involves the buckets. If we 
had a perfect hash function, every key would map to a different bucket. In this 
case, we can simply store the key/value pairs in an array where each entry in the 
array is what we’ve been calling a bucket. However, even with an excellent hash 
function, in most situations we will have to deal with collisions. A collision occurs 
when more than one key maps to a bucket, such as when we add both the words 
avocado and aardvark to our dictionary hash table. The simplest way to store all of 
the values that map to a given bucket is simply to maintain a list of values in the 
bucket. When we encounter a collision, such as adding aardvark to a dictionary 
that already contains avocado, we put the value associated with aardvark at the 
end of the list we’re maintaining in the “A” bucket, as shown in Figure A.2.

After adding the word avocado in Figure A.2, the first bucket has a single key/
value pair in its list. Later in this imaginary application we add the word aardvark, 
a word that collides with avocado because they both start with the letter A. You 
will notice in Figure A.3 that it simply gets placed at the end of the list in the first 
bucket:

avocado

avocado

Figure A.2 Inserting the word avocado into the hash table
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aardvark

avocado aardvark

avocado

Figure A.3 Resolving the conflict when adding the word aardvark

Armed with some background on the notions of a hash function and collision reso-
lution, we’re ready to take a look at implementing our own hash table.

A CPU HASH TABLEA.2.2 

As described in the previous section, our hash table will consist of essentially two 
parts: a hash function and a data structure of buckets. Our buckets will be imple-
mented exactly as before: We will allocate an array of length N, and each entry in 
the array holds a list of key/value pairs. Before concerning ourselves with a hash 
function, we will take a look at the data structures involved:

#include "../common/book.h"

struct Entry {

    unsigned int    key;

    void*           value;

    Entry           *next;

};

struct Table {

    size_t  count;

    Entry   **entries;

    Entry   *pool;

    Entry   *firstFree;

};
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As described in the introductory section, the structure Entry holds both a key 
and a value. In our application, we will use unsigned integer keys to store our 
key/value pairs. The value associated with this key can be any data, so we have 
declared value as a void* to indicate this. Our application will primarily be 
concerned with creating the hash table data structure, so we won’t actually store 
anything in the value field. We have included it in the structure for complete-
ness, in case you want to use this code in your own applications. The last piece of 
data in our hash table Entry is a pointer to the next Entry. After collisions, we’ll 
have multiple entries in the same bucket, and we have decided to store these 
entries as a list. So, each entry will point to the next entry in the bucket, thereby 
forming a list of entries that have hashed to the same location in the table. The 
last entry will have a NULL next pointer. 

At its heart, the Table structure itself is an array of “buckets.” This bucket 
array is just an array of length count, where each bucket in entries is just a 
pointer to an Entry. To avoid incurring the complication and performance hit of 
allocating memory every time we want to add an Entry to the table, the table 
will maintain a large array of available entries in pool. The field firstFree 
points to the next available Entry for use, so when we need to add an entry to 
the table, we can simply use the Entry pointed to by firstFree and increment 
that pointer. Note that this will also simplify our cleanup code because we can 
free all of these entries with a single call to free(). If we had allocated every 
entry as we went, we would have to walk through the table and free every entry 
one by one.

After understanding the data structures involved, let’s take a look at some of the 
other support code:

void initialize_table( Table &table, int entries,

                       int elements ) {

    table.count = entries;

    table.entries = (Entry**)calloc( entries, sizeof(Entry*) );

    table.pool = (Entry*)malloc( elements * sizeof( Entry ) );

    table.firstFree = table.pool;

}
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Table initialization consists primarily of allocating memory and clearing memory 
for the bucket array entries. We also allocate storage for a pool of entries and 
initialize the firstFree pointer to be the first entry in the pool array. 

At the end of the application, we’ll want to free the memory we’ve allocated, so 
our cleanup routine frees the bucket array and the pool of free entries:

void free_table( Table &table ) {

    free( table.entries );

    free( table.pool );

}

In our introduction, we spoke quite a bit about the hash function. Specifically, 
we discussed how a good hash function can make the difference between an 
excellent hash table implementation and poor one. In this example, we’re using 
unsigned integers as our keys, and we need to map these to the indices of our 
bucket array. The simplest way to do this would be to select the bucket with an 
index equal to the key. That is, we could store the entry e in table.entries[e.
key]. However, we have no way of guaranteeing that every key will be less than 
the length of the array of buckets. Fortunately, this problem can be solved rela-
tively painlessly:

size_t hash( unsigned int key, size_t count ) {

    return key % count;

}

If the hash function is so important, how can we get away with such a simple 
one? Ideally, we want the keys to map uniformly across all the buckets in our 
table, and all we’re doing here is taking the key modulo the array length. In 
reality, hash functions may not normally be this simple, but because this is just 
an example program, we will be randomly generating our keys. If we assume 
that the random number generator generates values roughly uniformly, this 
hash function should map these keys uniformly across all of the buckets of the 
hash table. In your own hash table implementation, you may require a more 
complicated hash function. 
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Having seen the hash table structures and the hash function, we’re ready to look 
at the process of adding a key/value pair to the table. The process involves three 
basic steps:

Compute the hash function on the input key to determine the new entry’s 1. 
bucket.

Take a preallocated 2. Entry from the pool and initialize its key and value 
fields.

Insert the entry at the front of the proper bucket’s list.3. 

We translate these steps to code in a fairly straightforward way.

void add_to_table( Table &table, unsigned int key, void* value ) 
{

    //Step 1

    size_t hashValue = hash( key, table.count );

    //Step 2

    Entry *location = table.firstFree++;

    location->key = key;

    location->value = value;

    //Step 3

    location->next = table.entries[hashValue];

    table.entries[hashValue] = location;

}

If you have never seen linked lists (or it’s been a while), step 3 may be tricky 
to understand at first. The existing list has its first node stored at table.
entries[hashValue]. With this in mind, we can insert a new node at the head 
of the list in two steps: First, we set our new entry’s next pointer to point to the 
first node in the existing list. Then, we store the new entry in the bucket array so it 
becomes the first node of the new list.
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Since it’s a good idea to have some idea whether the code you’ve written works, 
we’ve implemented a routine to perform a sanity check on a hash table. The 
check involves first walking through the table and examining every node. 
We compute the hash function on the node’s key and confirm that the node 
is stored in the correct bucket. After checking every node, we verify that the 
number of nodes actually in the table is indeed equal to the number of elements 
we intended to add to the table. If these numbers don’t agree, then either 
we’ve added a node accidentally to multiple buckets or we haven’t inserted it 
correctly.

#define SIZE    (100*1024*1024)

#define ELEMENTS    (SIZE / sizeof(unsigned int))

void verify_table( const Table &table ) {

    int count = 0;

    for (size_t i=0; i<table.count; i++) {

        Entry   *current = table.entries[i];

        while (current != NULL) {

            ++count;

            if (hash( current->value, table.count ) != i)

                printf( "%d hashed to %ld, but was located "

                        "at %ld\n", current->value,

                        hash( current->value, table.count ), i );

            current = current->next;

        }

    }

    if (count != ELEMENTS)

        printf( "%d elements found in hash table.  Should be %ld\n",

                count, ELEMENTS );

    else

        printf( "All %d elements found in hash table.\n", count);

}
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With all the infrastructure code out of the way, we can look at main(). As with 
many of this book’s examples, a lot of the heavy lifting has been done in helper 
functions, so we hope that main() will be relatively easy to follow:

#define HASH_ENTRIES     1024

int main( void ) {

    unsigned int *buffer =

                     (unsigned int*)big_random_block( SIZE );

    clock_t start, stop;

    start = clock();

    Table table;

    initialize_table( table, HASH_ENTRIES, ELEMENTS );

    for (int i=0; i<ELEMENTS; i++) {

        add_to_table( table, buffer[i], (void*)NULL );

    }

    stop = clock();

    float   elapsedTime = (float)(stop - start) /

                          (float)CLOCKS_PER_SEC * 1000.0f;

    printf( "Time to hash:  %3.1f ms\n", elapsedTime );

    verify_table( table );

    free_table( table );

    free( buffer );

    return 0;

}

As you can see, we start by allocating a big chunk of random numbers. These 
randomly generated unsigned integers will be the keys we insert into our 
hash table. After generating the numbers, we read the system time in order to 
measure the performance of our implementation. We initialize the hash table and 
then insert each random key into the table using a for() loop. After adding all 
the keys, we read the system time again to compute the elapsed time to initialize 
and add the keys. Finally, we verify the hash table with our sanity check routine 
and free the buffers we’ve allocated. 
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You probably noticed that we are using NULL as the value for every key/value pair. 
In a typical application, you would likely store some useful data with the key, but 
because we are primarily concerned with the hash table implementation itself, 
we’re storing a meaningless value with each key. 

A.2.3 MULTITHREADED HASH TABLE

There are some assumptions built into our CPU hash table that will no longer be 
valid when we move to the GPU. First, we have assumed that only one node can 
be added to the table at a time in order to make the addition of a node simpler. If 
more than one thread were trying to add a node to the table at once, we could end 
up with problems similar to the multithreaded addition problems in the example 
from Chapter 9.

For example, let’s revisit our “avocado and aardvark” example and imagine that 
threads A and B are trying to add these entries to the table. Thread A computes a 
hash function on avocado, and thread B computes the function on aardvark. They 
both decide their keys belong in the same bucket. To add the new entry to the list, 
thread A and B start by setting their new entry’s next pointer to the first node of 
the existing list as in Figure A.4.

Then, both threads try to replace the entry in the bucket array with their new 
entry. However, the thread that finishes second is the only thread that has its 
update preserved because it overwrites the work of the previous thread. So 
consider the scenario where thread A replaces the entry altitude with its entry for 
avocado. Immediately after finishing, thread B replaces what it believe to be the 
entry for altitude with its entry for aardvark. Unfortunately, it’s replacing avocado 
instead of altitude, resulting in the situation illustrated in Figure A.5.

aardvark

altitude audience

avocado

Figure A.4  Multiple threads attempting to add a node to the same bucket
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aardvark altitude audience

avocado

Figure A.5 The hash table after an unsuccessful concurrent modification by 
two threads

Thread A’s entry is tragically “floating” outside of the hash table. Fortunately, our 
sanity check routine would catch this and alert us to the presence of a problem 
because it would count fewer nodes than we expected. But we still need to 
answer this question: How do we build a hash table on the GPU?! The key obser-
vation here involves the fact that only one thread can safely make modifications 
to a bucket at a time. This is similar to our dot product example where only one 
thread at a time could safely add its value to the final result. If each bucket had 
an atomic lock associated with it, we could ensure that only a single thread was 
making changes to a given bucket at a time.

A.2.4 A GPU HASH TABLE

Armed with a method to ensure safe multithreaded access to the hash table, we 
can proceed with a GPU implementation of the hash table application we wrote 
in Section A.2.2: A CPU Hash Table. We’ll need to include lock.h, the imple-
mentation of our GPU Lock structure from Section A.1.1 Atomic Locks, and we’ll 
need to declare the hash function as a __device__ function. Aside from these 
changes, the fundamental data structures and hash function are identical to the 
CPU implementation.
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#include “../common/book.h”

#include “lock.h”

struct Entry {

    unsigned int    key;

    void*           value;

    Entry           *next;

}; 

struct Table {

    size_t  count;

    Entry   **entries;

    Entry   *pool;

};

__device__ __host__ size_t hash( unsigned int value,

                                 size_t count ) {

    return value % count;

}

Initializing and freeing the hash table consists of the same steps as we performed 
on the CPU, but as with previous examples, we use CUDA runtime functions to 
accomplish this. We use cudaMalloc() to allocate a bucket array and a pool of 
entries, and we use cudaMemset() to set the bucket array entries to zero. To 
free the memory upon application completion, we use cudaFree().

void initialize_table( Table &table, int entries,

                       int elements ) {

    table.count = entries;

    HANDLE_ERROR( cudaMalloc( (void**)&table.entries,

                              entries * sizeof(Entry*)) );

    HANDLE_ERROR( cudaMemset( table.entries, 0,

                              entries * sizeof(Entry*) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&table.pool,

                               elements * sizeof(Entry)) );

}
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void free_table( Table &table ) {

    cudaFree( table.pool );

    cudaFree( table.entries );

}

We used a routine to check our hash table for correctness in the CPU implemen-
tation. We need a similar routine for the GPU version, so we have two options. We 
could write a GPU-based version of verify_table(), or we could use the same 
code we used in the CPU version and add a function that copies a hash table from 
the GPU to the CPU. Although either option gets us what we need, the second 
option seems superior for two reasons: First, it involves reusing our CPU version 
of verify_table(). As with code reuse in general, this saves time and ensures 
that future changes to the code would need to be made in only one place for both 
versions of the hash table. Second, implementing a copy function will uncover an 
interesting problem, the solution to which may be very useful to you in the future.

As promised, verify_table() is identical to the CPU implementation and is 
reprinted here for your convenience:

#define SIZE    (100*1024*1024)

#define ELEMENTS    (SIZE / sizeof(unsigned int))

#define HASH_ENTRIES     1024

void verify_table( const Table &dev_table ) {

    Table   table;

    copy_table_to_host( dev_table, table );

    int count = 0;

    for (size_t i=0; i<table.count; i++) {

        Entry   *current = table.entries[i];

        while (current != NULL) {

            ++count;

            if (hash( current->value, table.count ) != i)

                printf( "%d hashed to %ld, but was located "

                        "at %ld\n", current->value,

                        hash(current->value, table.count), i );

            current = current->next;

        }

    }
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    if (count != ELEMENTS)

        printf( “%d elements found in hash table.  Should be %ld\n”,

                count, ELEMENTS );

    else

        printf( “All %d elements found in hash table.\n”, count );

    free( table.pool );

    free( table.entries );

}

Since we chose to reuse our CPU implementation of verify_table(), we need a 
function to copy the table from GPU memory to host memory. There are three steps 
to this function, two relatively obvious steps and a third, trickier step. The first two 
steps involve allocating host memory for the hash table data and performing a copy 
of the GPU data structures into this memory with cudaMemcpy(). We have done 
this many times previously, so this should come as no surprise.

void copy_table_to_host( const Table &table, Table &hostTable) {

    hostTable.count = table.count;

    hostTable.entries = (Entry**)calloc( table.count,

                                         sizeof(Entry*) );

    hostTable.pool = (Entry*)malloc( ELEMENTS *

                                     sizeof( Entry ) );

    HANDLE_ERROR( cudaMemcpy( hostTable.entries, table.entries,

                              table.count * sizeof(Entry*),

                              cudaMemcpyDeviceToHost ) );

    HANDLE_ERROR( cudaMemcpy( hostTable.pool, table.pool,

                              ELEMENTS * sizeof( Entry ),

                              cudaMemcpyDeviceToHost ) );

The tricky portion of this routine involves the fact that some of the data we have 
copied are pointers. We cannot simply copy these pointers to the host because 
they are addresses on the GPU; they will no longer be valid pointers on the host. 
However, the relative offsets of the pointers will still be valid. Every GPU pointer 



AdvAnced AtomIcs

272

to an Entry points somewhere within the table.pool[] array, but for the hash 
table to be usable on the host, we need them to point to the same Entry in the 
hostTable.pool[] array. 

Given a GPU pointer X, we therefore need to add the pointer’s offset from table.
pool to hostTable.pool to get a valid host pointer. That is, the new pointer 
should be computed as follows:

    (X - table.pool) + hostTable.pool

We perform this update for every Entry pointer we’ve copied from the GPU: the 
Entry pointers in hostTable.entries and the next pointer of every Entry 
in the table’s pool of entries:

    for (int i=0; i<table.count; i++) {

        if (hostTable.entries[i] != NULL)

            hostTable.entries[i] =

                (Entry*)((size_t)hostTable.entries[i] -

                (size_t)table.pool + (size_t)hostTable.pool);

    }

    for (int i=0; i<ELEMENTS; i++) {

        if (hostTable.pool[i].next != NULL)

            hostTable.pool[i].next =

                (Entry*)((size_t)hostTable.pool[i].next -

                (size_t)table.pool + (size_t)hostTable.pool);

    }

}

Having seen the data structures, hash function, initialization, cleanup, and verifi-
cation code, the most important piece remaining is the one that actually involves 
CUDA C atomics. As arguments, the add_to_table() kernel will take an array 
of keys and values to be added to the hash table. Its next argument is the hash 
table itself, and the final argument is an array of locks that will be used to lock 
each of the table’s buckets. Since our input is two arrays that our threads will 
need to index, we also need our all-too-common index linearization:

__global__ void add_to_table( unsigned int *keys, void **values, 

                              Table table, Lock *lock ) {

    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    int stride = blockDim.x * gridDim.x;
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Our threads walk through the input arrays exactly like they did in the dot product 
example. For each key in the keys[] array, the thread will compute the hash 
function in order to determine which bucket the key/value pair belongs in. After 
determining the target bucket, the thread locks the bucket, adds its key/value 
pair, and unlocks the bucket.

    while (tid < ELEMENTS) {

        unsigned int key = keys[tid];

        size_t hashValue = hash( key, table.count );

        for (int i=0; i<32; i++) {

            if ((tid % 32) == i) {

                Entry *location = &(table.pool[tid]);

                location->key = key;

                location->value = values[tid];

                lock[hashValue].lock();

                location->next = table.entries[hashValue];

                table.entries[hashValue] = location;

                lock[hashValue].unlock();

            }

        }

        tid += stride;

    }

}

There is something remarkably peculiar about this bit of code, however. The 
for() loop and subsequent if() statement seem decidedly unnecessary. In 
Chapter 6, we introduced the concept of a warp. If you’ve forgotten, a warp is a 
collection of 32 threads that execute together in lockstep. Although the nuances 
of how this gets implemented in the GPU are beyond the scope of this book, only 
one thread in the warp can acquire the lock at a time, and we will suffer many a 
headache if we let all 32 threads in the warp contend for the lock simultaneously. 
In this situation, we’ve found that it’s best to do some of the work in software and 
simply walk through each thread in the warp, giving each a chance to acquire the 
data structure’s lock, do its work, and subsequently release the lock.

The flow of main() should appear identical to the CPU implementation. We 
start by allocating a large chunk of random data for our hash table keys. Then we 
create start and stop CUDA events and record the start event for our performance 
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measurements. We proceed to allocate GPU memory for our array of random 
keys, copy the array up to the device, and initialize our hash table:

int main( void ) {

    unsigned int *buffer =

                     (unsigned int*)big_random_block( SIZE );

    cudaEvent_t     start, stop;

    HANDLE_ERROR( cudaEventCreate( &start ) );

    HANDLE_ERROR( cudaEventCreate( &stop ) );

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );

    unsigned int *dev_keys;

    void         **dev_values;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_keys, SIZE ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_values, SIZE ) );

    HANDLE_ERROR( cudaMemcpy( dev_keys, buffer, SIZE,

                              cudaMemcpyHostToDevice ) );

    // copy the values to dev_values here

    // filled in by user of this code example

    Table table;

    initialize_table( table, HASH_ENTRIES, ELEMENTS );

The last step of preparation to build our hash table involves preparing locks for 
the hash table’s buckets. We allocate one lock for each bucket in the hash table. 
Conceivably we could save a lot of memory by using only one lock for the whole 
table. But doing so would utterly destroy performance because every thread 
would have to compete for the table lock whenever a group of threads tries to 
simultaneously add entries to the table. So we declare an array of locks, one for 
every bucket in the array. We then allocate a GPU array for the locks and copy 
them up to the device:
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    Lock    lock[HASH_ENTRIES];

    Lock    *dev_lock;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_lock,

                              HASH_ENTRIES * sizeof( Lock ) ) );

    HANDLE_ERROR( cudaMemcpy( dev_lock, lock,

                              HASH_ENTRIES * sizeof( Lock ),

                              cudaMemcpyHostToDevice ) );

The rest of main() is similar to the CPU version: We add all of our keys to the 
hash table, stop the performance timer, verify the correctness of the hash table, 
and clean up after ourselves:

    add_to_table<<<60,256>>>( dev_keys, dev_values,

                              table, dev_lock );

    HANDLE_ERROR( cudaEventRecord( stop, 0 ) );

    HANDLE_ERROR( cudaEventSynchronize( stop ) );

    float   elapsedTime;

    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

                                        start, stop ) );

    printf( "Time to hash:  %3.1f ms\n", elapsedTime );

    verify_table( table );

    HANDLE_ERROR( cudaEventDestroy( start ) );

    HANDLE_ERROR( cudaEventDestroy( stop ) );

    free_table( table );

    cudaFree( dev_lock );

    cudaFree( dev_keys );

    cudaFree( dev_values );

    free( buffer );

    return 0;

}
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A.2.5 HASH TABLE PERFORMANCE

Using an Intel Core 2 Duo, the CPU hash table example in Section A.2.2: A CPU 
Hash Table takes 360ms to build a hash table from 100MB of data. The code 
was built with the option -O3 to ensure maximally optimized CPU code. The 
multithreaded GPU hash table in Section A.2.4: A GPU Hash Table takes 375ms 
to complete the same task. Differing by less than 5 percent, these are roughly 
comparable execution times, which raises an excellent question: Why would such 
a massively parallel machine such as a GPU get beaten by a single-threaded CPU 
version of the same application? Frankly, this is because GPUs were not designed 
to excel at multithreaded access to complex data structures such as a hash table. 
For this reason, there are very few performance motivations to build a data struc-
ture such as a hash table on the GPU. So if all your application needs to do is build 
a hash table or similar data structure, you would likely be better off doing this on 
your CPU.

On the other hand, you will sometimes find yourself in a situation where a long 
computation pipeline involves one or two stages that the GPU does not enjoy a 
performance advantage over comparable CPU implementations. In these situa-
tions, you have three (somewhat obvious) options: 

Perform every step of the pipeline on the GPU• 

Perform every step of the pipeline on the CPU• 

Perform some pipeline steps on the GPU and some on the CPU• 

The last option sounds like the best of both worlds; however, it implies that you 
will need to synchronize your CPU and GPU at any point in your application where 
you want to move computation from the GPU to CPU or back. This synchronization 
and subsequent data transfer between host and GPU can often kill any perfor-
mance advantage you might have derived from employing a hybrid approach in 
the first place.

In such a situation, it may be worth your time to perform every phase of compu-
tation on the GPU, even if the GPU is not ideally suited for some steps of the 
algorithm. In this vein, the GPU hash table can potentially prevent a CPU/GPU 
synchronization point, minimize data transfer between the host and GPU and free 
the CPU to perform other computations. In such a scenario, it’s possible that the 
overall performance of a GPU implementation would exceed a CPU/GPU hybrid 
approach, despite the GPU being no faster than the CPU on certain steps (or 
potentially even getting trounced by the CPU in some cases). 
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A.3 APPENDIX REVIEW

Appendix ReviewA.3 
We saw how to use atomic compare-and-swap operations to implement a GPU 
mutex. Using a lock built with this mutex, we saw how to improve our original dot 
product application to run entirely on the GPU. We carried this idea further by 
implementing a multithreaded hash table that used an array of locks to prevent 
unsafe simultaneous modifications by multiple threads. In fact, the mutex we 
developed could be used for any manner of parallel data structures, and we hope 
that you’ll find it useful in your own experimentation and application develop-
ment. Of course, the performance of applications that use the GPU to imple-
ment mutex-based data structures needs careful study. Our GPU hash table gets 
beaten by a single-threaded CPU version of the same code, so it will make sense 
to use the GPU for this type of application only in certain situations. There is no 
blanket rule that can be used to determine whether a GPU-only, CPU-only, or 
hybrid approach will work best, but knowing how to use atomics will allow you to 
make that decision on a case-by-case basis.
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