

CUDA by Example

This page intentionally left blank

CUDA by Example

An IntroductIon to
GenerAl-PurPose
GPu ProGrAmmInG

JAson sAnders
edwArd KAndrot

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

NVIDIA makes no warranty or representation that the techniques described herein are free from
any Intellectual Property claims. The reader assumes all risk of any such claims based on his or
her use of these techniques.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Sanders, Jason.
 CUDA by example : an introduction to general-purpose GPU programming /
Jason Sanders, Edward Kandrot.
 p. cm.
 Includes index.
 ISBN 978-0-13-138768-3 (pbk. : alk. paper)
 1. Application software—Development. 2. Computer architecture. 3.
Parallel programming (Computer science) I. Kandrot, Edward. II. Title.
 QA76.76.A65S255 2010
 005.2'75—dc22
 2010017618

Copyright © 2011 NVIDIA Corporation

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-138768-3
ISBN-10: 0-13-138768-5
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, July 2010

To our families and friends, who gave us endless support.
To our readers, who will bring us the future.
And to the teachers who taught our readers to read.

This page intentionally left blank

vii

Foreword . xiii

Preface . xv

Acknowledgments . xvii

About the Authors . xix

1 Why CUDA? Why NoW? 1

 1.1 Chapter Objectives . 2

 1.2 The Age of Parallel Processing . 2

1.2.1 Central Processing Units . 2

 1.3 The Rise of GPU Computing . 4

1.3.1 A Brief History of GPUs . 4

1.3.2 Early GPU Computing . 5

 1.4 CUDA . 6

1.4.1 What Is the CUDA Architecture? . 7

1.4.2 Using the CUDA Architecture . 7

 1.5 Applications of CUDA . 8

1.5.1 Medical Imaging . 8

1.5.2 Computational Fluid Dynamics . 9

1.5.3 Environmental Science . 10

 1.6 Chapter Review . 11

Contents

viii

 contents

2 GettiNG StArteD 13

 2.1 Chapter Objectives . 14

 2.2 Development Environment . 14

2.2.1 CUDA-Enabled Graphics Processors 14

2.2.2 NVIDIA Device Driver . 16

2.2.3 CUDA Development Toolkit . 16

2.2.4 Standard C Compiler . 18

 2.3 Chapter Review . 19

3 iNtroDUCtioN to CUDA C 21

 3.1 Chapter Objectives . 22

 3.2 A First Program . 22

3.2.1 Hello, World! . 22

3.2.2 A Kernel Call . 23

3.2.3 Passing Parameters . 24

 3.3 Querying Devices . 27

 3.4 Using Device Properties . 33

 3.5 Chapter Review . 35

4 PArAllel ProGrAmmiNG iN CUDA C 37

 4.1 Chapter Objectives . 38

 4.2 CUDA Parallel Programming . 38

4.2.1 Summing Vectors . 38

4.2.2 A Fun Example . 46

 4.3 Chapter Review . 57

 contents

ix

5 threAD CooPerAtioN 59

 5.1 Chapter Objectives . 60

 5.2 Splitting Parallel Blocks . 60

5.2.1 Vector Sums: Redux . 60

5.2.2 GPU Ripple Using Threads . 69

 5.3 Shared Memory and Synchronization 75

5.3.1 Dot Product . 76

5.3.1 Dot Product Optimized (Incorrectly) 87

5.3.2 Shared Memory Bitmap . 90

 5.4 Chapter Review . 94

6 CoNStANt memory AND eveNtS 95

 6.1 Chapter Objectives . 96

 6.2 Constant Memory . 96

6.2.1 Ray Tracing Introduction . 96

6.2.2 Ray Tracing on the GPU . 98

6.2.3 Ray Tracing with Constant Memory 104

6.2.4 Performance with Constant Memory 106

 6.3 Measuring Performance with Events 108

6.3.1 Measuring Ray Tracer Performance 110

 6.4 Chapter Review . 114

7 textUre memory 115

 7.1 Chapter Objectives . 116

 7.2 Texture Memory Overview . 116

 Contents

x

 7.3 simulating Heat transfer . 117

7.3.1 simple Heating Model . 117

7.3.2 Computing temperature Updates 119

7.3.3 Animating the simulation . 121

7.3.4 Using texture Memory . 125

7.3.5 Using two-Dimensional texture Memory 131

 7.4 Chapter Review . 137

8 Graphics interoperability 139

 8.1 Chapter objectives . 140

 8.2 Graphics Interoperation . 140

 8.3 GPU Ripple with Graphics Interoperability 147

8.3.1 the GPUAnimBitmap structure 148

8.3.2 GPU Ripple Redux . 152

 8.4 Heat transfer with Graphics Interop 154

 8.5 DirectX Interoperability . 160

 8.6 Chapter Review . 161

9 atomics 163

 9.1 Chapter objectives . 164

 9.2 Compute Capability . 164

9.2.1 the Compute Capability of nVIDIA GPUs 164

9.2.2 Compiling for a Minimum Compute Capability 167

 9.3 Atomic operations overview . 168

 9.4 Computing Histograms . 170

9.4.1 CPU Histogram Computation . 171

9.4.2 GPU Histogram Computation . 173

 9.5 Chapter Review . 183

 contents

xi

10 StreAmS 185

 10.1 Chapter Objectives . 186

 10.2 Page-Locked Host Memory . 186

 10.3 CUDA Streams . 192

 10.4 Using a Single CUDA Stream . 192

 10.5 Using Multiple CUDA Streams . 198

 10.6 GPU Work Scheduling . 205

 10.7 Using Multiple CUDA Streams Effectively 208

 10.8 Chapter Review . 211

11 CUDA C oN mUltiPle GPUS 213

 11.1 Chapter Objectives . 214

 11.2 Zero-Copy Host Memory . 214

11.2.1 Zero-Copy Dot Product . 214

11.2.2 Zero-Copy Performance . 222

 11.3 Using Multiple GPUs . 224

 11.4 Portable Pinned Memory . 230

 11.5 Chapter Review . 235

12 the FiNAl CoUNtDoWN 237

 12.1 Chapter Objectives . 238

 12.2 CUDA Tools . 238

12.2.1 CUDA Toolkit . 238

12.2.2 CUFFT . 239

12.2.3 CUBLAS . 239

12.2.4 NVIDIA GPU Computing SDK 240

 Contents

xii

12.2.5 nVIDIA Performance Primitives 241

12.2.6 Debugging CUDA C . 241

12.2.7 CUDA Visual Profiler . 243

 12.3 Written Resources . 244

12.3.1 Programming Massively Parallel Processors:
 A Hands-on Approach . 244

12.3.2 CUDA U . 245

12.3.3 nVIDIA Forums . 246

 12.4 Code Resources . 246

12.4.1 CUDA Data Parallel Primitives Library 247

12.4.2 CULAtools . 247

12.4.3 Language Wrappers . 247

 12.5 Chapter Review . 248

A AdvAnced Atomics 249

 A.1 Dot Product Revisited . 250

A.1.1 Atomic Locks . 251

A.1.2 Dot Product Redux: Atomic Locks 254

 A.2 Implementing a Hash table . 258

A.2.1 Hash table overview . 259

A.2.2 A CPU Hash table . 261

A.2.3 Multithreaded Hash table . 267

A.2.4 A GPU Hash table . 268

A.2.5 Hash table Performance . 276

 A.3 Appendix Review . 277

Index . 279

xiii

Foreword

Recent activities of major chip manufacturers such as NVIDIA make it more
evident than ever that future designs of microprocessors and large HPC
systems will be hybrid/heterogeneous in nature. These heterogeneous systems
will rely on the integration of two major types of components in varying
proportions:

multi- and many-core CPU technology•	 : The number of cores will continue to
escalate because of the desire to pack more and more components on a chip
while avoiding the power wall, the instruction-level parallelism wall, and the
memory wall.

Special-purpose hardware and massively parallel accelerators•	 : For example,
GPUs from NVIDIA have outpaced standard CPUs in floating-point performance
in recent years. Furthermore, they have arguably become as easy, if not easier,
to program than multicore CPUs.

The relative balance between these component types in future designs is not
clear and will likely vary over time. There seems to be no doubt that future
generations of computer systems, ranging from laptops to supercomputers,
will consist of a composition of heterogeneous components. Indeed, the petaflop
(1015 floating-point operations per second) performance barrier was breached by
such a system.

And yet the problems and the challenges for developers in the new computational
landscape of hybrid processors remain daunting. Critical parts of the software
infrastructure are already having a very difficult time keeping up with the pace
of change. In some cases, performance cannot scale with the number of cores
because an increasingly large portion of time is spent on data movement rather
than arithmetic. In other cases, software tuned for performance is delivered years
after the hardware arrives and so is obsolete on delivery. And in some cases, as
on some recent GPUs, software will not run at all because programming environ-
ments have changed too much.

xiv

FOREWORD

CUDA by Example addresses the heart of the software development challenge by
leveraging one of the most innovative and powerful solutions to the problem of
programming the massively parallel accelerators in recent years.

This book introduces you to programming in CUDA C by providing examples and
insight into the process of constructing and effectively using NVIDIA GPUs. It
presents introductory concepts of parallel computing from simple examples to
debugging (both logical and performance), as well as covers advanced topics and
issues related to using and building many applications. Throughout the book,
programming examples reinforce the concepts that have been presented.

The book is required reading for anyone working with accelerator-based
computing systems. It explores parallel computing in depth and provides an
approach to many problems that may be encountered. It is especially useful for
application developers, numerical library writers, and students and teachers of
parallel computing.

I have enjoyed and learned from this book, and I feel confident that you will
as well.

Jack Dongarra
University Distinguished Professor, University of Tennessee Distinguished Research
Staff Member, Oak Ridge National Laboratory

xv

Preface

This book shows how, by harnessing the power of your computer’s graphics
process unit (GPU), you can write high-performance software for a wide range
of applications. Although originally designed to render computer graphics on
a monitor (and still used for this purpose), GPUs are increasingly being called
upon for equally demanding programs in science, engineering, and finance,
among other domains. We refer collectively to GPU programs that address
problems in nongraphics domains as general-purpose. Happily, although you
need to have some experience working in C or C++ to benefit from this book,
you need not have any knowledge of computer graphics. None whatsoever! GPU
programming simply offers you an opportunity to build—and to build mightily—
on your existing programming skills.

To program NVIDIA GPUs to perform general-purpose computing tasks, you
will want to know what CUDA is. NVIDIA GPUs are built on what’s known as
the CUDA Architecture. You can think of the CUDA Architecture as the scheme
by which NVIDIA has built GPUs that can perform both traditional graphics-
rendering tasks and general-purpose tasks. To program CUDA GPUs, we will
be using a language known as CUDA C. As you will see very early in this book,
CUDA C is essentially C with a handful of extensions to allow programming of
massively parallel machines like NVIDIA GPUs.

We’ve geared CUDA by Example toward experienced C or C++ programmers
who have enough familiarity with C such that they are comfortable reading and
writing code in C. This book builds on your experience with C and intends to serve
as an example-driven, “quick-start” guide to using NVIDIA’s CUDA C program-
ming language. By no means do you need to have done large-scale software
architecture, to have written a C compiler or an operating system kernel, or to
know all the ins and outs of the ANSI C standards. However, we do not spend
time reviewing C syntax or common C library routines such as malloc() or
memcpy(), so we will assume that you are already reasonably familiar with these
topics.

xvi

PREFACE

You will encounter some techniques that can be considered general parallel
programming paradigms, although this book does not aim to teach general
parallel programming techniques. Also, while we will look at nearly every part of
the CUDA API, this book does not serve as an extensive API reference nor will it
go into gory detail about every tool that you can use to help develop your CUDA C
software. Consequently, we highly recommend that this book be used in conjunc-
tion with NVIDIA’s freely available documentation, in particular the NVIDIA CUDA
Programming Guide and the NVIDIA CUDA Best Practices Guide. But don’t stress
out about collecting all these documents because we’ll walk you through every-
thing you need to do.

Without further ado, the world of programming NVIDIA GPUs with CUDA C awaits!

xvii

It’s been said that it takes a village to write a technical book, and CUDA by Example
is no exception to this adage. The authors owe debts of gratitude to many people,
some of whom we would like to thank here.

Ian Buck, NVIDIA’s senior director of GPU computing software, has been immea-
surably helpful in every stage of the development of this book, from championing
the idea to managing many of the details. We also owe Tim Murray, our always-
smiling reviewer, much of the credit for this book possessing even a modicum of
technical accuracy and readability. Many thanks also go to our designer, Darwin
Tat, who created fantastic cover art and figures on an extremely tight schedule.
Finally, we are much obliged to John Park, who helped guide this project through
the delicate legal process required of published work.

Without help from Addison-Wesley’s staff, this book would still be nothing more
than a twinkle in the eyes of the authors. Peter Gordon, Kim Boedigheimer, and
Julie Nahil have all shown unbounded patience and professionalism and have
genuinely made the publication of this book a painless process. Additionally,
Molly Sharp’s production work and Kim Wimpsett’s copyediting have utterly
transformed this text from a pile of documents riddled with errors to the volume
you’re reading today.

Some of the content of this book could not have been included without the
help of other contributors. Specifically, Nadeem Mohammad was instrumental
in researching the CUDA case studies we present in Chapter 1, and Nathan
Whitehead generously provided code that we incorporated into examples
throughout the book.

We would be remiss if we didn’t thank the others who read early drafts of
this text and provided helpful feedback, including Genevieve Breed and Kurt
Wall. Many of the NVIDIA software engineers provided invaluable technical

Acknowledgments

xviii

AcKnowledGments

assistance during the course of developing the content for CUDA by Example,
including Mark Hairgrove who scoured the book, uncovering all manner of
inconsistencies— technical, typographical, and grammatical. Steve Hines,
Nicholas Wilt, and Stephen Jones consulted on specific sections of the CUDA
API, helping elucidate nuances that the authors would have otherwise over-
looked. Thanks also go out to Randima Fernando who helped to get this project
off the ground and to Michael Schidlowsky for acknowledging Jason in his book.

And what acknowledgments section would be complete without a heartfelt
expression of gratitude to parents and siblings? It is here that we would like to
thank our families, who have been with us through everything and have made
this all possible. With that said, we would like to extend special thanks to loving
parents, Edward and Kathleen Kandrot and Stephen and Helen Sanders. Thanks
also go to our brothers, Kenneth Kandrot and Corey Sanders. Thank you all for
your unwavering support.

xix

Jason Sanders is a senior software engineer in the CUDA Platform group at
NVIDIA. While at NVIDIA, he helped develop early releases of CUDA system
software and contributed to the OpenCL 1.0 Specification, an industry standard
for heterogeneous computing. Jason received his master’s degree in computer
science from the University of California Berkeley where he published research in
GPU computing, and he holds a bachelor’s degree in electrical engineering from
Princeton University. Prior to joining NVIDIA, he previously held positions at ATI
Technologies, Apple, and Novell. When he’s not writing books, Jason is typically
working out, playing soccer, or shooting photos.

edward Kandrot is a senior software engineer on the CUDA Algorithms team at
NVIDIA. He has more than 20 years of industry experience focused on optimizing
code and improving performance, including for Photoshop and Mozilla. Kandrot
has worked for Adobe, Microsoft, and Google, and he has been a consultant at
many companies, including Apple and Autodesk. When not coding, he can be
found playing World of Warcraft or visiting Las Vegas for the amazing food.

About the Authors

This page intentionally left blank

1

Chapter 1

Why CUDA? Why Now?

There was a time in the not-so-distant past when parallel computing was looked
upon as an “exotic” pursuit and typically got compartmentalized as a specialty
within the field of computer science. This perception has changed in profound
ways in recent years. The computing world has shifted to the point where, far
from being an esoteric pursuit, nearly every aspiring programmer needs training
in parallel programming to be fully effective in computer science. Perhaps you’ve
picked this book up unconvinced about the importance of parallel programming
in the computing world today and the increasingly large role it will play in the
years to come. This introductory chapter will examine recent trends in the hard-
ware that does the heavy lifting for the software that we as programmers write.
In doing so, we hope to convince you that the parallel computing revolution has
already happened and that, by learning CUDA C, you’ll be well positioned to write
high-performance applications for heterogeneous platforms that contain both
central and graphics processing units.

WHY CUDA? WHY NOW?

2

Chapter Objectives1.1
Through the course of this chapter, you will accomplish the following:

You will learn about the increasingly important role of parallel computing.•

You will learn a brief history of GPU computing and CUDA.•

You will learn about some successful applications that use CUDA C.•

The Age of Parallel Processing1.2
In recent years, much has been made of the computing industry’s widespread
shift to parallel computing. Nearly all consumer computers in the year 2010
will ship with multicore central processors. From the introduction of dual-core,
low-end netbook machines to 8- and 16-core workstation computers, no longer
will parallel computing be relegated to exotic supercomputers or mainframes.
Moreover, electronic devices such as mobile phones and portable music players
have begun to incorporate parallel computing capabilities in an effort to provide
functionality well beyond those of their predecessors.

More and more, software developers will need to cope with a variety of parallel
computing platforms and technologies in order to provide novel and rich experi-
ences for an increasingly sophisticated base of users. Command prompts are out;
multithreaded graphical interfaces are in. Cellular phones that only make calls
are out; phones that can simultaneously play music, browse the Web, and provide
GPS services are in.

centrAl ProcessInG unIts1.2.1

For 30 years, one of the important methods for the improving the performance
of consumer computing devices has been to increase the speed at which the
processor’s clock operated. Starting with the first personal computers of the early
1980s, consumer central processing units (CPUs) ran with internal clocks oper-
ating around 1MHz. About 30 years later, most desktop processors have clock
speeds between 1GHz and 4GHz, nearly 1,000 times faster than the clock on the

3

1.2 THE AGE OF PARALLEL PROCESSING

original personal computer. Although increasing the CPU clock speed is certainly
not the only method by which computing performance has been improved, it has
always been a reliable source for improved performance.

In recent years, however, manufacturers have been forced to look for alterna-
tives to this traditional source of increased computational power. Because of
various fundamental limitations in the fabrication of integrated circuits, it is no
longer feasible to rely on upward-spiraling processor clock speeds as a means
for extracting additional power from existing architectures. Because of power and
heat restrictions as well as a rapidly approaching physical limit to transistor size,
researchers and manufacturers have begun to look elsewhere.

Outside the world of consumer computing, supercomputers have for decades
extracted massive performance gains in similar ways. The performance of a
processor used in a supercomputer has climbed astronomically, similar to the
improvements in the personal computer CPU. However, in addition to dramatic
improvements in the performance of a single processor, supercomputer manu-
facturers have also extracted massive leaps in performance by steadily increasing
the number of processors. It is not uncommon for the fastest supercomputers to
have tens or hundreds of thousands of processor cores working in tandem.

In the search for additional processing power for personal computers, the
improvement in supercomputers raises a very good question: Rather than solely
looking to increase the performance of a single processing core, why not put
more than one in a personal computer? In this way, personal computers could
continue to improve in performance without the need for continuing increases in
processor clock speed.

In 2005, faced with an increasingly competitive marketplace and few alternatives,
leading CPU manufacturers began offering processors with two computing cores
instead of one. Over the following years, they followed this development with the
release of three-, four-, six-, and eight-core central processor units. Sometimes
referred to as the multicore revolution, this trend has marked a huge shift in the
evolution of the consumer computing market.

Today, it is relatively challenging to purchase a desktop computer with a CPU
containing but a single computing core. Even low-end, low-power central proces-
sors ship with two or more cores per die. Leading CPU manufacturers have
already announced plans for 12- and 16-core CPUs, further confirming that
parallel computing has arrived for good.

WHY CUDA? WHY NOW?

4

The Rise of GPU Computing1.3
In comparison to the central processor’s traditional data processing pipeline,
performing general-purpose computations on a graphics processing unit (GPU) is
a new concept. In fact, the GPU itself is relatively new compared to the computing
field at large. However, the idea of computing on graphics processors is not as
new as you might believe.

A BRIEF HISTORY OF GPUS1.3.1

We have already looked at how central processors evolved in both clock speeds
and core count. In the meantime, the state of graphics processing underwent a
dramatic revolution. In the late 1980s and early 1990s, the growth in popularity of
graphically driven operating systems such as Microsoft Windows helped create
a market for a new type of processor. In the early 1990s, users began purchasing
2D display accelerators for their personal computers. These display accelerators
offered hardware-assisted bitmap operations to assist in the display and usability
of graphical operating systems.

Around the same time, in the world of professional computing, a company by
the name of Silicon Graphics spent the 1980s popularizing the use of three-
dimensional graphics in a variety of markets, including government and defense
applications and scientific and technical visualization, as well as providing the
tools to create stunning cinematic effects. In 1992, Silicon Graphics opened the
programming interface to its hardware by releasing the OpenGL library. Silicon
Graphics intended OpenGL to be used as a standardized, platform-independent
method for writing 3D graphics applications. As with parallel processing and
CPUs, it would only be a matter of time before the technologies found their way
into consumer applications.

By the mid-1990s, the demand for consumer applications employing 3D graphics
had escalated rapidly, setting the stage for two fairly significant developments.
First, the release of immersive, first-person games such as Doom, Duke Nukem
3D, and Quake helped ignite a quest to create progressively more realistic 3D envi-
ronments for PC gaming. Although 3D graphics would eventually work their way
into nearly all computer games, the popularity of the nascent first-person shooter
genre would significantly accelerate the adoption of 3D graphics in consumer
computing. At the same time, companies such as NVIDIA, ATI Technologies,
and 3dfx Interactive began releasing graphics accelerators that were affordable

5

1.3 THE RISE OF GPU COMPUTING

enough to attract widespread attention. These developments cemented 3D
graphics as a technology that would figure prominently for years to come.

The release of NVIDIA’s GeForce 256 further pushed the capabilities of consumer
graphics hardware. For the first time, transform and lighting computations could
be performed directly on the graphics processor, thereby enhancing the potential
for even more visually interesting applications. Since transform and lighting were
already integral parts of the OpenGL graphics pipeline, the GeForce 256 marked
the beginning of a natural progression where increasingly more of the graphics
pipeline would be implemented directly on the graphics processor.

From a parallel-computing standpoint, NVIDIA’s release of the GeForce 3 series
in 2001 represents arguably the most important breakthrough in GPU technology.
The GeForce 3 series was the computing industry’s first chip to implement
Microsoft’s then-new DirectX 8.0 standard. This standard required that compliant
hardware contain both programmable vertex and programmable pixel shading
stages. For the first time, developers had some control over the exact computa-
tions that would be performed on their GPUs.

eArly GPu comPutInG1.3.2

The release of GPUs that possessed programmable pipelines attracted many
researchers to the possibility of using graphics hardware for more than simply
OpenGL- or DirectX-based rendering. The general approach in the early days of
GPU computing was extraordinarily convoluted. Because standard graphics APIs
such as OpenGL and DirectX were still the only way to interact with a GPU, any
attempt to perform arbitrary computations on a GPU would still be subject to the
constraints of programming within a graphics API. Because of this, researchers
explored general-purpose computation through graphics APIs by trying to make
their problems appear to the GPU to be traditional rendering.

Essentially, the GPUs of the early 2000s were designed to produce a color for
every pixel on the screen using programmable arithmetic units known as pixel
shaders. In general, a pixel shader uses its (x,y) position on the screen as well
as some additional information to combine various inputs in computing a final
color. The additional information could be input colors, texture coordinates, or
other attributes that would be passed to the shader when it ran. But because
the arithmetic being performed on the input colors and textures was completely
controlled by the programmer, researchers observed that these input “colors”
could actually be any data.

WHY CUDA? WHY NOW?

6

So if the inputs were actually numerical data signifying something other than
color, programmers could then program the pixel shaders to perform arbitrary
computations on this data. The results would be handed back to the GPU as the
final pixel “color,” although the colors would simply be the result of whatever
computations the programmer had instructed the GPU to perform on their inputs.
This data could be read back by the researchers, and the GPU would never be the
wiser. In essence, the GPU was being tricked into performing nonrendering tasks
by making those tasks appear as if they were a standard rendering. This trickery
was very clever but also very convoluted.

Because of the high arithmetic throughput of GPUs, initial results from these
experiments promised a bright future for GPU computing. However, the program-
ming model was still far too restrictive for any critical mass of developers to
form. There were tight resource constraints, since programs could receive input
data only from a handful of input colors and a handful of texture units. There
were serious limitations on how and where the programmer could write results
to memory, so algorithms requiring the ability to write to arbitrary locations in
memory (scatter) could not run on a GPU. Moreover, it was nearly impossible to
predict how your particular GPU would deal with floating-point data, if it handled
floating-point data at all, so most scientific computations would be unable to
use a GPU. Finally, when the program inevitably computed the incorrect results,
failed to terminate, or simply hung the machine, there existed no reasonably good
method to debug any code that was being executed on the GPU.

As if the limitations weren’t severe enough, anyone who still wanted to use a GPU
to perform general-purpose computations would need to learn OpenGL or DirectX
since these remained the only means by which one could interact with a GPU. Not
only did this mean storing data in graphics textures and executing computations
by calling OpenGL or DirectX functions, but it meant writing the computations
themselves in special graphics-only programming languages known as shading
languages. Asking researchers to both cope with severe resource and program-
ming restrictions as well as to learn computer graphics and shading languages
before attempting to harness the computing power of their GPU proved too large
a hurdle for wide acceptance.

cudA1.4
It would not be until five years after the release of the GeForce 3 series that GPU
computing would be ready for prime time. In November 2006, NVIDIA unveiled the

7

1.4 CUDA

industry’s first DirectX 10 GPU, the GeForce 8800 GTX. The GeForce 8800 GTX was
also the first GPU to be built with NVIDIA’s CUDA Architecture. This architecture
included several new components designed strictly for GPU computing and aimed
to alleviate many of the limitations that prevented previous graphics processors
from being legitimately useful for general-purpose computation.

WHAT IS THE CUDA ARCHITECTURE?1.4.1

Unlike previous generations that partitioned computing resources into vertex
and pixel shaders, the CUDA Architecture included a unified shader pipeline,
allowing each and every arithmetic logic unit (ALU) on the chip to be marshaled
by a program intending to perform general-purpose computations. Because
NVIDIA intended this new family of graphics processors to be used for general-
purpose computing, these ALUs were built to comply with IEEE requirements for
single-precision floating-point arithmetic and were designed to use an instruc-
tion set tailored for general computation rather than specifically for graphics.
Furthermore, the execution units on the GPU were allowed arbitrary read and
write access to memory as well as access to a software-managed cache known
as shared memory. All of these features of the CUDA Architecture were added in
order to create a GPU that would excel at computation in addition to performing
well at traditional graphics tasks.

USING THE CUDA ARCHITECTURE1.4.2

The effort by NVIDIA to provide consumers with a product for both computa-
tion and graphics could not stop at producing hardware incorporating the CUDA
Architecture, though. Regardless of how many features NVIDIA added to its chips
to facilitate computing, there continued to be no way to access these features
without using OpenGL or DirectX. Not only would this have required users to
continue to disguise their computations as graphics problems, but they would
have needed to continue writing their computations in a graphics-oriented
shading language such as OpenGL’s GLSL or Microsoft’s HLSL.

To reach the maximum number of developers possible, NVIDIA took industry-
standard C and added a relatively small number of keywords in order to harness
some of the special features of the CUDA Architecture. A few months after
the launch of the GeForce 8800 GTX, NVIDIA made public a compiler for this
language, CUDA C. And with that, CUDA C became the first language specifically
designed by a GPU company to facilitate general-purpose computing on GPUs.

WHY CUDA? WHY NOW?

8

In addition to creating a language to write code for the GPU, NVIDIA also provides
a specialized hardware driver to exploit the CUDA Architecture’s massive compu-
tational power. Users are no longer required to have any knowledge of the
OpenGL or DirectX graphics programming interfaces, nor are they required to
force their problem to look like a computer graphics task.

Applications of CUDA1.5
Since its debut in early 2007, a variety of industries and applications have enjoyed
a great deal of success by choosing to build applications in CUDA C. These
benefits often include orders-of-magnitude performance improvement over the
previous state-of-the-art implementations. Furthermore, applications running on
NVIDIA graphics processors enjoy superior performance per dollar and perfor-
mance per watt than implementations built exclusively on traditional central
processing technologies. The following represent just a few of the ways in which
people have put CUDA C and the CUDA Architecture into successful use.

medIcAl ImAGInG1.5.1

The number of people who have been affected by the tragedy of breast cancer has
dramatically risen over the course of the past 20 years. Thanks in a large part to
the tireless efforts of many, awareness and research into preventing and curing
this terrible disease has similarly risen in recent years. Ultimately, every case of
breast cancer should be caught early enough to prevent the ravaging side effects
of radiation and chemotherapy, the permanent reminders left by surgery, and
the deadly consequences in cases that fail to respond to treatment. As a result,
researchers share a strong desire to find fast, accurate, and minimally invasive
ways to identify the early signs of breast cancer.

The mammogram, one of the current best techniques for the early detection of
breast cancer, has several significant limitations. Two or more images need to be
taken, and the film needs to be developed and read by a skilled doctor to identify
potential tumors. Additionally, this X-ray procedure carries with it all the risks of
repeatedly radiating a patient’s chest. After careful study, doctors often require
further, more specific imaging—and even biopsy—in an attempt to eliminate the
possibility of cancer. These false positives incur expensive follow-up work and
cause undue stress to the patient until final conclusions can be drawn.

9

1.5 APPLICATIONS OF CUDA

Ultrasound imaging is safer than X-ray imaging, so doctors often use it in conjunc-
tion with mammography to assist in breast cancer care and diagnosis. But conven-
tional breast ultrasound has its limitations as well. As a result, TechniScan Medical
Systems was born. TechniScan has developed a promising, three- dimensional,
ultrasound imaging method, but its solution had not been put into practice for a
very simple reason: computation limitations. Simply put, converting the gathered
ultrasound data into the three-dimensional imagery required computation consid-
ered prohibitively time-consuming and expensive for practical use.

The introduction of NVIDIA’s first GPU based on the CUDA Architecture along with
its CUDA C programming language provided a platform on which TechniScan
could convert the dreams of its founders into reality. As the name indicates, its
Svara ultrasound imaging system uses ultrasonic waves to image the patient’s
chest. The TechniScan Svara system relies on two NVIDIA Tesla C1060 processors
in order to process the 35GB of data generated by a 15-minute scan. Thanks to
the computational horsepower of the Tesla C1060, within 20 minutes the doctor
can manipulate a highly detailed, three-dimensional image of the woman’s breast.
TechniScan expects wide deployment of its Svara system starting in 2010.

COMPUTATIONAL FLUID DYNAMICS1.5.2

For many years, the design of highly efficient rotors and blades remained a
black art of sorts. The astonishingly complex movement of air and fluids around
these devices cannot be effectively modeled by simple formulations, so accu-
rate simulations prove far too computationally expensive to be realistic. Only the
largest supercomputers in the world could hope to offer computational resources
on par with the sophisticated numerical models required to develop and validate
designs. Since few have access to such machines, innovation in the design of
such machines continued to stagnate.

The University of Cambridge, in a great tradition started by Charles Babbage, is
home to active research into advanced parallel computing. Dr. Graham Pullan
and Dr. Tobias Brandvik of the “many-core group” correctly identified the poten-
tial in NVIDIA’s CUDA Architecture to accelerate computational fluid dynamics
unprecedented levels. Their initial investigations indicated that acceptable levels
of performance could be delivered by GPU-powered, personal workstations.
Later, the use of a small GPU cluster easily outperformed their much more costly
supercomputers and further confirmed their suspicions that the capabilities of
NVIDIA’s GPU matched extremely well with the problems they wanted to solve.

WHY CUDA? WHY NOW?

10

For the researchers at Cambridge, the massive performance gains offered by
CUDA C represent more than a simple, incremental boost to their supercom-
puting resources. The availability of copious amounts of low-cost GPU computa-
tion empowered the Cambridge researchers to perform rapid experimentation.
Receiving experimental results within seconds streamlined the feedback process
on which researchers rely in order to arrive at breakthroughs. As a result, the
use of GPU clusters has fundamentally transformed the way they approach their
research. Nearly interactive simulation has unleashed new opportunities for
innovation and creativity in a previously stifled field of research.

envIronmentAl scIence1.5.3

The increasing need for environmentally sound consumer goods has arisen as
a natural consequence of the rapidly escalating industrialization of the global
economy. Growing concerns over climate change, the spiraling prices of fuel,
and the growing level of pollutants in our air and water have brought into sharp
relief the collateral damage of such successful advances in industrial output.
Detergents and cleaning agents have long been some of the most necessary
yet potentially calamitous consumer products in regular use. As a result, many
scientists have begun exploring methods for reducing the environmental impact
of such detergents without reducing their efficacy. Gaining something for nothing
can be a tricky proposition, however.

The key components to cleaning agents are known as surfactants. Surfactant
molecules determine the cleaning capacity and texture of detergents and sham-
poos, but they are often implicated as the most environmentally devastating
component of cleaning products. These molecules attach themselves to dirt and
then mix with water such that the surfactants can be rinsed away along with the
dirt. Traditionally, measuring the cleaning value of a new surfactant would require
extensive laboratory testing involving numerous combinations of materials and
impurities to be cleaned. This process, not surprisingly, can be very slow and
expensive.

Temple University has been working with industry leader Procter & Gamble to
use molecular simulation of surfactant interactions with dirt, water, and other
materials. The introduction of computer simulations serves not just to accelerate
a traditional lab approach, but it extends the breadth of testing to numerous vari-
ants of environmental conditions, far more than could be practically tested in the
past. Temple researchers used the GPU-accelerated Highly Optimized Object-
oriented Many-particle Dynamics (HOOMD) simulation software written by the
Department of Energy’s Ames Laboratory. By splitting their simulation across two

11

1.6 CHAPTER REVIEW

NVIDIA Tesla GPUs, they were able achieve equivalent performance to the 128
CPU cores of the Cray XT3 and to the 1024 CPUs of an IBM BlueGene/L machine.
By increasing the number of Tesla GPUs in their solution, they are already simu-
lating surfactant interactions at 16 times the performance of previous platforms.
Since NVIDIA’s CUDA has reduced the time to complete such comprehensive
simulations from several weeks to a few hours, the years to come should offer
a dramatic rise in products that have both increased effectiveness and reduced
environmental impact.

Chapter Review1.6
The computing industry is at the precipice of a parallel computing revolution,
and NVIDIA’s CUDA C has thus far been one of the most successful languages
ever designed for parallel computing. Throughout the course of this book, we will
help you learn how to write your own code in CUDA C. We will help you learn the
special extensions to C and the application programming interfaces that NVIDIA
has created in service of GPU computing. You are not expected to know OpenGL
or DirectX, nor are you expected to have any background in computer graphics.

We will not be covering the basics of programming in C, so we do not recommend
this book to people completely new to computer programming. Some famil-
iarity with parallel programming might help, although we do not expect you to
have done any parallel programming. Any terms or concepts related to parallel
programming that you will need to understand will be explained in the text. In
fact, there may be some occasions when you find that knowledge of traditional
parallel programming will cause you to make assumptions about GPU computing
that prove untrue. So in reality, a moderate amount of experience with C or C++
programming is the only prerequisite to making it through this book.

In the next chapter, we will help you set up your machine for GPU computing,
ensuring that you have both the hardware and the software components neces-
sary get started. After that, you’ll be ready to get your hands dirty with CUDA C. If
you already have some experience with CUDA C or you’re sure that your system
has been properly set up to do development in CUDA C, you can skip to Chapter 3.

This page intentionally left blank

13

Chapter 2

Getting Started

We hope that Chapter 1 has gotten you excited to get started learning CUDA C.
Since this book intends to teach you the language through a series of coding
examples, you’ll need a functioning development environment. Sure, you could
stand on the sideline and watch, but we think you’ll have more fun and stay
interested longer if you jump in and get some practical experience hacking
CUDA C code as soon as possible. In this vein, this chapter will walk you
through some of the hardware and software components you’ll need in order to
get started. The good news is that you can obtain all of the software you’ll need
for free, leaving you more money for whatever tickles your fancy.

GettInG stArted

14

Chapter Objectives2.1
Through the course of this chapter, you will accomplish the following:

You will download all the software components required through this book.•

You will set up an environment in which you can build code written in CUDA C.•

Development Environment2.2
Before embarking on this journey, you will need to set up an environment in which
you can develop using CUDA C. The prerequisites to developing code in CUDA C
are as follows:

A CUDA-enabled graphics processor•

An NVIDIA device driver•

A CUDA development toolkit•

A standard C compiler•

To make this chapter as painless as possible, we’ll walk through each of these
prerequisites now.

CUDA-ENABLED GRAPHICS PROCESSORS2.2.1

Fortunately, it should be easy to find yourself a graphics processor that has
been built on the CUDA Architecture because every NVIDIA GPU since the 2006
release of the GeForce 8800 GTX has been CUDA-enabled. Since NVIDIA regularly
releases new GPUs based on the CUDA Architecture, the following will undoubt-
edly be only a partial list of CUDA-enabled GPUs. Nevertheless, the GPUs are all
CUDA-capable.

For a complete list, you should consult the NVIDIA website at www.nvidia.com/cuda,
although it is safe to assume that all recent GPUs (GPUs from 2007 on) with more
than 256MB of graphics memory can be used to develop and run code written
with CUDA C.

www.nvidia.com/cuda

develoPment envIronment

15

2.2 DEVELOPMENT ENVIRONMENT

GeForce GTX 480

GeForce GTX 470

GeForce GTX 295

GeForce GTX 285

GeForce GTX 285 for Mac

GeForce GTX 280

GeForce GTX 275

GeForce GTX 260

GeForce GTS 250

GeForce GT 220

GeForce G210

GeForce GTS 150

GeForce GT 130

GeForce GT 120

GeForce G100

GeForce 9800 GX2

GeForce 9800 GTX+

GeForce 9800 GTX

GeForce 9800 GT

GeForce 9600 GSO

GeForce 9600 GT

GeForce 9500 GT

GeForce 9400GT

GeForce 8800 Ultra

GeForce 8800 GTX

GeForce 8800 GTS

GeForce 8800 GT

GeForce 8800 GS

GeForce 8600 GTS

GeForce 8600 GT

GeForce 8500 GT

GeForce 8400 GS

GeForce 9400 mGPU

GeForce 9300 mGPU

GeForce 8300 mGPU

GeForce 8200 mGPU

GeForce 8100 mGPU

Tesla S2090

Tesla M2090

Tesla S2070

Tesla M2070

Tesla C2070

Tesla S2050

Tesla M2050

Tesla C2050

Tesla S1070

Tesla C1060

Tesla S870

Tesla C870

Tesla D870

QUADro mobile
ProDUCtS

Quadro FX 3700M

Quadro FX 3600M

Quadro FX 2700M

Quadro FX 1700M

Quadro FX 1600M

Quadro FX 770M

Quadro FX 570M

Quadro FX 370M

Quadro FX 360M

Quadro NVS 320M

Quadro NVS 160M

Quadro NVS 150M

Quadro NVS 140M

Quadro NVS 135M

Quadro NVS 130M

Quadro FX 5800

Quadro FX 5600

Quadro FX 4800

Quadro FX 4800 for Mac

Quadro FX 4700 X2

Quadro FX 4600

Quadro FX 3800

Quadro FX 3700

Quadro FX 1800

Quadro FX 1700

Quadro FX 580

Quadro FX 570

Quadro FX 470

Quadro FX 380

Quadro FX 370

Quadro FX 370 Low Profile

Quadro CX

Quadro NVS 450

Quadro NVS 420

Quadro NVS 295

Quadro NVS 290

Quadro Plex 2100 D4

Quadro Plex 2200 D2

Quadro Plex 2100 S4

Quadro Plex 1000 Model IV

GeForCe mobile
ProDUCtS

GeForce GTX 280M

GeForce GTX 260M

GeForce GTS 260M

GeForce GTS 250M

GeForce GTS 160M

GeForce GTS 150M

GeForce GT 240M

GeForce GT 230M

Table 2.1 CUDA-enabled GPUs

Continued

GettInG stArted

16

Table 2.1 CUDA-enabled GPUs (Continued)

GeForce GT 130M

GeForce G210M

GeForce G110M

GeForce G105M

GeForce G102M

GeForce 9800M GTX

GeForce 9800M GT

GeForce 9800M GTS

GeForce 9800M GS

GeForce 9700M GTS

GeForce 9700M GT

GeForce 9650M GS

GeForce 9600M GT

GeForce 9600M GS

GeForce 9500M GS

GeForce 9500M G

GeForce 9300M GS

GeForce 9300M G

GeForce 9200M GS

GeForce 9100M G

GeForce 8800M GTS

GeForce 8700M GT

GeForce 8600M GT

GeForce 8600M GS

GeForce 8400M GT

GeForce 8400M GS

nvIdIA devIce drIver2.2.2

NVIDIA provides system software that allows your programs to communicate
with the CUDA-enabled hardware. If you have installed your NVIDIA GPU properly,
you likely already have this software installed on your machine. It never hurts
to ensure you have the most recent drivers, so we recommend that you visit
www.nvidia.com/cuda and click the Download Drivers link. Select the options that
match the graphics card and operating system on which you plan to do develop-
ment. After following the installation instructions for the platform of your choice,
your system will be up-to-date with the latest NVIDIA system software.

cudA develoPment toolKIt2.2.3

If you have a CUDA-enabled GPU and NVIDIA’s device driver, you are ready to run
compiled CUDA C code. This means that you can download CUDA-powered appli-
cations, and they will be able to successfully execute their code on your graphics
processor. However, we assume that you want to do more than just run code
because, otherwise, this book isn’t really necessary. If you want to develop code
for NVIDIA GPUs using CUDA C, you will need additional software. But as prom-
ised earlier, none of it will cost you a penny.

You will learn these details in the next chapter, but since your CUDA C applica-
tions are going to be computing on two different processors, you are consequently
going to need two compilers. One compiler will compile code for your GPU, and
one will compile code for your CPU. NVIDIA provides the compiler for your GPU
code. As with the NVIDIA device driver, you can download the CUDA Toolkit at
http://developer.nvidia.com/object/gpucomputing.html. Click the CUDA Toolkit
link to reach the download page shown in Figure 2.1.

www.nvidia.com/cuda
http://developer.nvidia.com/object/gpucomputing.html

develoPment envIronment

17

2.2 DEVELOPMENT ENVIRONMENT

Figure 2.1 The CUDA download page

GettInG stArted

18

You will again be asked to select your platform from among 32- and 64-bit
versions of Windows XP, Windows Vista, Windows 7, Linux, and Mac OS. From the
available downloads, you need to download the CUDA Toolkit in order to build the
code examples contained in this book. Additionally, you are encouraged, although
not required, to download the GPU Computing SDK code samples, which contains
dozens of helpful example programs. The GPU Computing SDK code samples will
not be covered in this book, but they nicely complement the material we intend
to cover, and as with learning any style of programming, the more examples, the
better. You should also take note that although nearly all the code in this book will
work on the Linux, Windows, and Mac OS platforms, we have targeted the appli-
cations toward Linux and Windows. If you are using Mac OS X, you will be living
dangerously and using unsupported code examples.

stAndArd c comPIler2.2.4

As we mentioned, you will need a compiler for GPU code and a compiler for
CPU code. If you downloaded and installed the CUDA Toolkit as suggested in the
previous section, you have a compiler for GPU code. A compiler for CPU code is
the only component that remains on our CUDA checklist, so let’s address that
issue so we can get to the interesting stuff.

wIndows

On Microsoft Windows platforms, including Windows XP, Windows Vista, Windows
Server 2008, and Windows 7, we recommend using the Microsoft Visual Studio C
compiler. NVIDIA currently supports both the Visual Studio 2005 and Visual Studio
2008 families of products. As Microsoft releases new versions, NVIDIA will likely
add support for newer editions of Visual Studio while dropping support for older
versions. Many C and C++ developers already have Visual Studio 2005 or Visual
Studio 2008 installed on their machine, so if this applies to you, you can safely
skip this subsection.

If you do not have access to a supported version of Visual Studio and aren’t ready
to invest in a copy, Microsoft does provide free downloads of the Visual Studio
2008 Express edition on its website. Although typically unsuitable for commercial
software development, the Visual Studio Express editions are an excellent way to
get started developing CUDA C on Windows platforms without investing money in
software licenses. So, head on over to www.microsoft.com/visualstudio if you’re
in need of Visual Studio 2008!

www.microsoft.com/visualstudio

CHAPTER REVIEW

19

2.3 CHAPTER REVIEW

LINUX

Most Linux distributions typically ship with a version of the GNU C compiler
(gcc) installed. As of CUDA 3.0, the following Linux distributions shipped with
supported versions of gcc installed:

Red Hat Enterprise Linux 4.8•

Red Hat Enterprise Linux 5.3•

OpenSUSE 11.1•

SUSE Linux Enterprise Desktop 11•

Ubuntu 9.04•

Fedora 10•

If you’re a die-hard Linux user, you’re probably aware that many Linux software
packages work on far more than just the “supported” platforms. The CUDA
Toolkit is no exception, so even if your favorite distribution is not listed here, it
may be worth trying it anyway. The distribution’s kernel, gcc, and glibc versions
will in a large part determine whether the distribution is compatible.

MACINTOSH OS X

If you want to develop on Mac OS X, you will need to ensure that your machine
has at least version 10.5.7 of Mac OS X. This includes version 10.6, Mac OS X
“Snow Leopard.” Furthermore, you will need to install gcc by downloading
and installing Apple’s Xcode. This software is provided free to Apple Developer
Connection (ADC) members and can be downloaded from http://developer.apple.
com/tools/Xcode. The code in this book was developed on Linux and Windows
platforms but should work without modification on Mac OS X systems.

Chapter Review2.3
If you have followed the steps in this chapter, you are ready to start developing
code in CUDA C. Perhaps you have even played around with some of the NVIDIA
GPU Computing SDK code samples you downloaded from NVIDIA’s website. If so,
we applaud your willingness to tinker! If not, don’t worry. Everything you need is
right here in this book. Either way, you’re probably ready to start writing your first
program in CUDA C, so let’s get started.

http://developer.apple.com/tools/Xcode
http://developer.apple.com/tools/Xcode

This page intentionally left blank

21

Chapter 3

Introduction to CUDA C

If you read Chapter 1, we hope we have convinced you of both the immense
computational power of graphics processors and that you are just the
programmer to harness it. And if you continued through Chapter 2, you should
have a functioning environment set up in order to compile and run the code
you’ll be writing in CUDA C. If you skipped the first chapters, perhaps you’re just
skimming for code samples, perhaps you randomly opened to this page while
browsing at a bookstore, or maybe you’re just dying to get started; that’s OK, too
(we won’t tell). Either way, you’re ready to get started with the first code exam-
ples, so let’s go.

IntroductIon to cudA c

22

Chapter Objectives3.1
Through the course of this chapter, you will accomplish the following:

You will write your first lines of code in CUDA C.•

You will learn the difference between code written for the • host and code written
for a device.

You will learn how to run device code from the host.•

You will learn about the ways device memory can be used on CUDA-capable •
devices.

You will learn how to query your system for information on its CUDA-capable •
devices.

A First Program3.2
Since we intend to learn CUDA C by example, let’s take a look at our first example
of CUDA C. In accordance with the laws governing written works of computer
programming, we begin by examining a “Hello, World!” example.

HELLO, WORLD!3.2.1

#include "../common/book.h"

int main(void) {

 printf("Hello, World!\n");

 return 0;

}

At this point, no doubt you’re wondering whether this book is a scam. Is this just
C? Does CUDA C even exist? The answers to these questions are both in the affir-
mative; this book is not an elaborate ruse. This simple “Hello, World!” example is

A FIRST PROGRAM

23

3.2 A FIRST PROGRAM

meant to illustrate that, at its most basic, there is no difference between CUDA C
and the standard C to which you have grown accustomed.

The simplicity of this example stems from the fact that it runs entirely on the host.
This will be one of the important distinctions made in this book; we refer to the
CPU and the system’s memory as the host and refer to the GPU and its memory
as the device. This example resembles almost all the code you have ever written
because it simply ignores any computing devices outside the host.

To remedy that sinking feeling that you’ve invested in nothing more than an
expensive collection of trivialities, we will gradually build upon this simple
example. Let’s look at something that uses the GPU (a device) to execute code.
A function that executes on the device is typically called a kernel.

A Kernel cAll3.2.2

Now we will build upon our example with some code that should look more
foreign than our plain-vanilla “Hello, World!” program.

#include <iostream>

__global__ void kernel(void) {

}

int main(void) {

 kernel<<<1,1>>>();

 printf("Hello, World!\n");

 return 0;

}

This program makes two notable additions to the original “Hello, World!”
example:

An empty function named • kernel() qualified with __global__

A call to the empty function, embellished with • <<<1,1>>>

As we saw in the previous section, code is compiled by your system’s standard
C compiler by default. For example, GNU gcc might compile your host code

IntroductIon to cudA c

24

on Linux operating systems, while Microsoft Visual C compiles it on Windows
systems. The NVIDIA tools simply feed this host compiler your code, and every-
thing behaves as it would in a world without CUDA.

Now we see that CUDA C adds the __global__ qualifier to standard C. This
mechanism alerts the compiler that a function should be compiled to run on
a device instead of the host. In this simple example, nvcc gives the function
kernel() to the compiler that handles device code, and it feeds main() to the
host compiler as it did in the previous example.

So, what is the mysterious call to kernel(), and why must we vandalize our
standard C with angle brackets and a numeric tuple? Brace yourself, because this
is where the magic happens.

We have seen that CUDA C needed a linguistic method for marking a function
as device code. There is nothing special about this; it is shorthand to send host
code to one compiler and device code to another compiler. The trick is actually in
calling the device code from the host code. One of the benefits of CUDA C is that
it provides this language integration so that device function calls look very much
like host function calls. Later we will discuss what actually happens behind the
scenes, but suffice to say that the CUDA compiler and runtime take care of the
messy business of invoking device code from the host.

So, the mysterious-looking call invokes device code, but why the angle brackets
and numbers? The angle brackets denote arguments we plan to pass to the
runtime system. These are not arguments to the device code but are parameters
that will influence how the runtime will launch our device code. We will learn
about these parameters to the runtime in the next chapter. Arguments to the
device code itself get passed within the parentheses, just like any other function
invocation.

PAssInG PArAmeters3.2.3

We’ve promised the ability to pass parameters to our kernel, and the time has
come for us to make good on that promise. Consider the following enhancement
to our “Hello, World!” application:

A FIRST PROGRAM

25

3.2 A FIRST PROGRAM

#include <iostream>

#include "book.h"

__global__ void add(int a, int b, int *c) {

 *c = a + b;

}

int main(void) {

 int c;

 int *dev_c;

 HANDLE_ERROR(cudaMalloc((void**)&dev_c, sizeof(int)));

 add<<<1,1>>>(2, 7, dev_c);

 HANDLE_ERROR(cudaMemcpy(&c,

 dev_c,

 sizeof(int),

 cudaMemcpyDeviceToHost));

 printf("2 + 7 = %d\n", c);

 cudaFree(dev_c);

 return 0;

}

You will notice a handful of new lines here, but these changes introduce only two
concepts:

We can pass parameters to a kernel as we would with any C function.•

We need to allocate memory to do anything useful on a device, such as return •
values to the host.

There is nothing special about passing parameters to a kernel. The angle-bracket
syntax notwithstanding, a kernel call looks and acts exactly like any function call
in standard C. The runtime system takes care of any complexity introduced by the
fact that these parameters need to get from the host to the device.

IntroductIon to cudA c

26

The more interesting addition is the allocation of memory using cudaMalloc().
This call behaves very similarly to the standard C call malloc(), but it tells
the CUDA runtime to allocate the memory on the device. The first argument
is a pointer to the pointer you want to hold the address of the newly allocated
memory, and the second parameter is the size of the allocation you want to make.
Besides that your allocated memory pointer is not the function’s return value,
this is identical behavior to malloc(), right down to the void* return type. The
HANDLE_ERROR() that surrounds these calls is a utility macro that we have
provided as part of this book’s support code. It simply detects that the call has
returned an error, prints the associated error message, and exits the application
with an EXIT_FAILURE code. Although you are free to use this code in your own
applications, it is highly likely that this error-handling code will be insufficient in
production code.

This raises a subtle but important point. Much of the simplicity and power of
CUDA C derives from the ability to blur the line between host and device code.
However, it is the responsibility of the programmer not to dereference the pointer
returned by cudaMalloc() from code that executes on the host. Host code may
pass this pointer around, perform arithmetic on it, or even cast it to a different
type. But you cannot use it to read or write from memory.

Unfortunately, the compiler cannot protect you from this mistake, either. It will
be perfectly happy to allow dereferences of device pointers in your host code
because it looks like any other pointer in the application. We can summarize the
restrictions on the usage of device pointer as follows:

You can pass pointers allocated with cudaMalloc() to functions that
execute on the device.

You can use pointers allocated with cudaMalloc()to read or write
memory from code that executes on the device.

You can pass pointers allocated with cudaMalloc()to functions that
execute on the host.

You cannot use pointers allocated with cudaMalloc()to read or write
memory from code that executes on the host.

If you’ve been reading carefully, you might have anticipated the next lesson: We
can’t use standard C’s free() function to release memory we’ve allocated with
cudaMalloc(). To free memory we’ve allocated with cudaMalloc(), we need
to use a call to cudaFree(), which behaves exactly like free() does.

QueryInG devIces

27

3.3 QUERYING DEVICES

We’ve seen how to use the host to allocate and free memory on the device, but
we’ve also made it painfully clear that you cannot modify this memory from the
host. The remaining two lines of the sample program illustrate two of the most
common methods for accessing device memory—by using device pointers from
within device code and by using calls to cudaMemcpy().

We use pointers from within device code exactly the same way we use them in
standard C that runs on the host code. The statement *c = a + b is as simple
as it looks. It adds the parameters a and b together and stores the result in the
memory pointed to by c. We hope this is almost too easy to even be interesting.

We listed the ways in which we can and cannot use device pointers from within
device and host code. These caveats translate exactly as one might imagine
when considering host pointers. Although we are free to pass host pointers
around in device code, we run into trouble when we attempt to use a host pointer
to access memory from within device code. To summarize, host pointers can
access memory from host code, and device pointers can access memory from
device code.

As promised, we can also access memory on a device through calls to
cudaMemcpy()from host code. These calls behave exactly like standard C
memcpy() with an additional parameter to specify which of the source and
destination pointers point to device memory. In the example, notice that the last
parameter to cudaMemcpy() is cudaMemcpyDeviceToHost, instructing the
runtime that the source pointer is a device pointer and the destination pointer is a
host pointer.

Unsurprisingly, cudaMemcpyHostToDevice would indicate the opposite situ-
ation, where the source data is on the host and the destination is an address on
the device. Finally, we can even specify that both pointers are on the device by
passing cudaMemcpyDeviceToDevice. If the source and destination pointers
are both on the host, we would simply use standard C’s memcpy() routine to copy
between them.

Querying Devices3.3
Since we would like to be allocating memory and executing code on our device,
it would be useful if our program had a way of knowing how much memory and
what types of capabilities the device had. Furthermore, it is relatively common for

IntroductIon to cudA c

28

people to have more than one CUDA-capable device per computer. In situations
like this, we will definitely want a way to determine which processor is which.

For example, many motherboards ship with integrated NVIDIA graphics proces-
sors. When a manufacturer or user adds a discrete graphics processor to this
computer, it then possesses two CUDA-capable processors. Some NVIDIA prod-
ucts, like the GeForce GTX 295, ship with two GPUs on a single card. Computers
that contain products such as this will also show two CUDA-capable processors.

Before we get too deep into writing device code, we would love to have a
 mechanism for determining which devices (if any) are present and what capa-
bilities each device supports. Fortunately, there is a very easy interface to
determine this information. First, we will want to know how many devices in the
system were built on the CUDA Architecture. These devices will be capable of
executing kernels written in CUDA C. To get the count of CUDA devices, we call
 cudaGetDeviceCount(). Needless to say, we anticipate receiving an award
for Most Creative Function Name.

 int count;

 HANDLE_ERROR(cudaGetDeviceCount(&count));

After calling cudaGetDeviceCount(), we can then iterate through the devices
and query relevant information about each. The CUDA runtime returns us these
properties in a structure of type cudaDeviceProp. What kind of properties
can we retrieve? As of CUDA 3.0, the cudaDeviceProp structure contains the
following:

 struct cudaDeviceProp {

 char name[256];

 size_t totalGlobalMem;

 size_t sharedMemPerBlock;

 int regsPerBlock;

 int warpSize;

 size_t memPitch;

 int maxThreadsPerBlock;

 int maxThreadsDim[3];

 int maxGridSize[3];

 size_t totalConstMem;

 int major;

QueryInG devIces

29

3.3 QUERYING DEVICES

 int minor;

 int clockRate;

 size_t textureAlignment;

 int deviceOverlap;

 int multiProcessorCount;

 int kernelExecTimeoutEnabled;

 int integrated;

 int canMapHostMemory;

 int computeMode;

 int maxTexture1D;

 int maxTexture2D[2];

 int maxTexture3D[3];

 int maxTexture2DArray[3];

 int concurrentKernels;

 }

Some of these are self-explanatory; others bear some additional description (see
Table 3.1).

Table 3.1 CUDA Device Properties

DEvICE ProPErty DESCrIPtIoN

char name[256]; An ASCII string identifying the device (e.g.,
"GeForce GTX 280")

size_t totalGlobalMem The amount of global memory on the device in
bytes

size_t sharedMemPerBlock The maximum amount of shared memory a single
block may use in bytes

int regsPerBlock The number of 32-bit registers available per block

int warpSize The number of threads in a warp

size_t memPitch The maximum pitch allowed for memory copies in
bytes

Continued

IntroductIon to cudA c

30

DEvICE ProPErty DESCrIPtIoN

int maxThreadsPerBlock The maximum number of threads that a block may
contain

int maxThreadsDim[3] The maximum number of threads allowed along
each dimension of a block

int maxGridSize[3] The number of blocks allowed along each
dimension of a grid

size_t totalConstMem The amount of available constant memory

int major The major revision of the device’s compute
capability

int minor The minor revision of the device’s compute
capability

size_t textureAlignment The device’s requirement for texture alignment

int deviceOverlap A boolean value representing whether the device
can simultaneously perform a cudaMemcpy()
and kernel execution

int multiProcessorCount The number of multiprocessors on the device

int kernelExecTimeoutEnabled A boolean value representing whether there is a
runtime limit for kernels executed on this device

int integrated A boolean value representing whether the device is
an integrated GPU (i.e., part of the chipset and not a
discrete GPU)

int canMapHostMemory A boolean value representing whether the device
can map host memory into the CUDA device
address space

int computeMode A value representing the device’s computing mode:
default, exclusive, or prohibited

int maxTexture1D The maximum size supported for 1D textures

Table 3.1 Caption needed (Continued)

QueryInG devIces

31

3.3 QUERYING DEVICES

DEvICE ProPErty DESCrIPtIoN

int maxTexture2D[2] The maximum dimensions supported for 2D
textures

int maxTexture3D[3] The maximum dimensions supported for 3D
textures

int maxTexture2DArray[3] The maximum dimensions supported for 2D
texture arrays

int concurrentKernels A boolean value representing whether the device
supports executing multiple kernels within the
same context simultaneously

We’d like to avoid going too far, too fast down our rabbit hole, so we will not
go into extensive detail about these properties now. In fact, the previous list is
missing some important details about some of these properties, so you will want
to consult the NVIDIA CUDA Programming Guide for more information. When you
move on to write your own applications, these properties will prove extremely
useful. However, for now we will simply show how to query each device and report
the properties of each. So far, our device query looks something like this:

#include "../common/book.h"

int main(void) {

 cudaDeviceProp prop;

 int count;

 HANDLE_ERROR(cudaGetDeviceCount(&count));

 for (int i=0; i< count; i++) {

 HANDLE_ERROR(cudaGetDeviceProperties(&prop, i));

 //Do something with our device's properties

 }

}

Table 3.1 CUDA Device Properties (Continued)

IntroductIon to cudA c

32

Now that we know each of the fields available to us, we can expand on the
ambiguous “Do something...” section and implement something marginally less
trivial:

#include "../common/book.h"

int main(void) {

 cudaDeviceProp prop;

 int count;

 HANDLE_ERROR(cudaGetDeviceCount(&count));

 for (int i=0; i< count; i++) {

 HANDLE_ERROR(cudaGetDeviceProperties(&prop, i));

 printf(" --- General Information for device %d ---\n", i);

 printf("Name: %s\n", prop.name);

 printf("Compute capability: %d.%d\n", prop.major, prop.minor);

 printf("Clock rate: %d\n", prop.clockRate);

 printf("Device copy overlap: ");

 if (prop.deviceOverlap)

 printf("Enabled\n");

 else

 printf("Disabled\n");

 printf("Kernel execition timeout : ");

 if (prop.kernelExecTimeoutEnabled)

 printf("Enabled\n");

 else

 printf("Disabled\n");

 printf(" --- Memory Information for device %d ---\n", i);

 printf("Total global mem: %ld\n", prop.totalGlobalMem);

 printf("Total constant Mem: %ld\n", prop.totalConstMem);

 printf("Max mem pitch: %ld\n", prop.memPitch);

 printf("Texture Alignment: %ld\n", prop.textureAlignment);

usInG devIce ProPertIes

33

3.4 USING DEVICE PROPERTIES

 printf(" --- MP Information for device %d ---\n", i);

 printf("Multiprocessor count: %d\n",

 prop.multiProcessorCount);

 printf("Shared mem per mp: %ld\n", prop.sharedMemPerBlock);

 printf("Registers per mp: %d\n", prop.regsPerBlock);

 printf("Threads in warp: %d\n", prop.warpSize);

 printf("Max threads per block: %d\n",

 prop.maxThreadsPerBlock);

 printf("Max thread dimensions: (%d, %d, %d)\n",

 prop.maxThreadsDim[0], prop.maxThreadsDim[1],

 prop.maxThreadsDim[2]);

 printf("Max grid dimensions: (%d, %d, %d)\n",

 prop.maxGridSize[0], prop.maxGridSize[1],

 prop.maxGridSize[2]);

 printf("\n");

 }

}

Using Device Properties3.4
Other than writing an application that handily prints every detail of every CUDA-
capable card, why might we be interested in the properties of each device in our
system? Since we as software developers want everyone to think our software is
fast, we might be interested in choosing the GPU with the most multiprocessors
on which to run our code. Or if the kernel needs close interaction with the CPU,
we might be interested in running our code on the integrated GPU that shares
system memory with the CPU. These are both properties we can query with
cudaGetDeviceProperties().

Suppose that we are writing an application that depends on having double-
precision floating-point support. After a quick consultation with Appendix A of the
NVIDIA CUDA Programming Guide, we know that cards that have compute capa-
bility 1.3 or higher support double-precision floating-point math. So to success-
fully run the double-precision application that we’ve written, we need to find at
least one device of compute capability 1.3 or higher.

IntroductIon to cudA c

34

Based on what we have seen with cudaGetDeviceCount() and
 cudaGetDeviceProperties(), we could iterate through each device and look
for one that either has a major version greater than 1 or has a major version of
1 and minor version greater than or equal to 3. But since this relatively common
procedure is also relatively annoying to perform, the CUDA runtime offers us an
automated way to do this. We first fill a cudaDeviceProp structure with the
properties we need our device to have.

 cudaDeviceProp prop;

 memset(&prop, 0, sizeof(cudaDeviceProp));

 prop.major = 1;

 prop.minor = 3;

After filling a cudaDeviceProp structure, we pass it to
 cudaChooseDevice() to have the CUDA runtime find a device that satisfies
this constraint. The call to cudaChooseDevice() returns a device ID that we
can then pass to cudaSetDevice(). From this point forward, all device opera-
tions will take place on the device we found in cudaChooseDevice().

#include "../common/book.h"

int main(void) {

 cudaDeviceProp prop;

 int dev;

 HANDLE_ERROR(cudaGetDevice(&dev));

 printf("ID of current CUDA device: %d\n", dev);

 memset(&prop, 0, sizeof(cudaDeviceProp));

 prop.major = 1;

 prop.minor = 3;

 HANDLE_ERROR(cudaChooseDevice(&dev, &prop));

 printf("ID of CUDA device closest to revision 1.3: %d\n", dev);

 HANDLE_ERROR(cudaSetDevice(dev));

}

CHAPTER REVIEW

35

3.5 CHAPTER REVIEW

Systems with multiple GPUs are becoming more and more common. For
example, many of NVIDIA’s motherboard chipsets contain integrated, CUDA-
capable GPUs. When a discrete GPU is added to one of these systems, you
suddenly have a multi-GPU platform. Moreover, NVIDIA’s SLI technology allows
multiple discrete GPUs to be installed side by side. In either of these cases, your
application may have a preference of one GPU over another. If your application
depends on certain features of the GPU or depends on having the fastest GPU
in the system, you should familiarize yourself with this API because there is no
guarantee that the CUDA runtime will choose the best or most appropriate GPU
for your application.

Chapter Review3.5
We’ve finally gotten our hands dirty writing CUDA C, and ideally it has been less
painful than you might have suspected. Fundamentally, CUDA C is standard C
with some ornamentation to allow us to specify which code should run on the
device and which should run on the host. By adding the keyword __global__
before a function, we indicated to the compiler that we intend to run the function
on the GPU. To use the GPU’s dedicated memory, we also learned a CUDA API
similar to C’s malloc(), memcpy(), and free() APIs. The CUDA versions of
these functions, cudaMalloc(), cudaMemcpy(), and cudaFree(), allow us
to allocate device memory, copy data between the device and host, and free the
device memory when we’ve finished with it.

As we progress through this book, we will see more interesting examples of
how we can effectively use the device as a massively parallel coprocessor. For
now, you should know how easy it is to get started with CUDA C, and in the next
chapter we will see how easy it is to execute parallel code on the GPU.

This page intentionally left blank

37

Chapter 4

Parallel Programming
in CUDA C

In the previous chapter, we saw how simple it can be to write code that executes
on the GPU. We have even gone so far as to learn how to add two numbers
together, albeit just the numbers 2 and 7. Admittedly, that example was not
immensely impressive, nor was it incredibly interesting. But we hope you are
convinced that it is easy to get started with CUDA C and you’re excited to learn
more. Much of the promise of GPU computing lies in exploiting the massively
parallel structure of many problems. In this vein, we intend to spend this chapter
examining how to execute parallel code on the GPU using CUDA C.

PArAllel ProGrAmmInG In cudA c

38

Chapter Objectives4.1
Through the course of this chapter, you will accomplish the following:

You will learn one of the fundamental ways CUDA exposes its parallelism.•

You will write your first parallel code with CUDA C.•

CUDA Parallel Programming4.2
Previously, we saw how easy it was to get a standard C function to start running
on a device. By adding the __global__ qualifier to the function and by calling
it using a special angle bracket syntax, we executed the function on our GPU.
Although this was extremely simple, it was also extremely inefficient because
NVIDIA’s hardware engineering minions have optimized their graphics processors
to perform hundreds of computations in parallel. However, thus far we have only
ever launched a kernel that runs serially on the GPU. In this chapter, we see how
straightforward it is to launch a device kernel that performs its computations in
parallel.

summInG vectors4.2.1

We will contrive a simple example to illustrate threads and how we use them to
code with CUDA C. Imagine having two lists of numbers where we want to sum
corresponding elements of each list and store the result in a third list. Figure 4.1
shows this process. If you have any background in linear algebra, you will recog-
nize this operation as summing two vectors.

cudA PArAllel ProGrAmmInG

39

4.2 CUDA PARALLEL PROGRAMMING

c

a

b

Figure 4.1 Summing two vectors

cPu vector sums

First we’ll look at one way this addition can be accomplished with traditional C code:

#include "../common/book.h"

#define N 10

void add(int *a, int *b, int *c) {

 int tid = 0; // this is CPU zero, so we start at zero

 while (tid < N) {

 c[tid] = a[tid] + b[tid];

 tid += 1; // we have one CPU, so we increment by one

 }

}

int main(void) {

 int a[N], b[N], c[N];

 // fill the arrays 'a' and 'b' on the CPU

 for (int i=0; i<N; i++) {

 a[i] = -i;

 b[i] = i * i;

 }

 add(a, b, c);

PArAllel ProGrAmmInG In cudA c

40

 // display the results

 for (int i=0; i<N; i++) {

 printf("%d + %d = %d\n", a[i], b[i], c[i]);

 }

 return 0;

}

Most of this example bears almost no explanation, but we will briefly look at the
add() function to explain why we overly complicated it.

void add(int *a, int *b, int *c) {

 int tid = 0; // this is CPU zero, so we start at zero

 while (tid < N) {

 c[tid] = a[tid] + b[tid];

 tid += 1; // we have one CPU, so we increment by one

 }

}

We compute the sum within a while loop where the index tid ranges from 0 to
N-1. We add corresponding elements of a[] and b[], placing the result in the
corresponding element of c[]. One would typically code this in a slightly simpler
manner, like so:

void add(int *a, int *b, int *c) {

 for (i=0; i < N; i++) {

 c[i] = a[i] + b[i];

 }

}

Our slightly more convoluted method was intended to suggest a potential way to
parallelize the code on a system with multiple CPUs or CPU cores. For example,
with a dual-core processor, one could change the increment to 2 and have one
core initialize the loop with tid = 0 and another with tid = 1. The first core
would add the even-indexed elements, and the second core would add the odd-
indexed elements. This amounts to executing the following code on each of the
two CPU cores:

cudA PArAllel ProGrAmmInG

41

4.2 CUDA PARALLEL PROGRAMMING

CPU Core 1 CPU Core 2

void add(int *a, int *b, int *c)
{
 int tid = 0;
 while (tid < N) {
 c[tid] = a[tid] + b[tid];
 tid += 2;
 }
}

void add(int *a, int *b, int *c)
{
 int tid = 1;
 while (tid < N) {
 c[tid] = a[tid] + b[tid];
 tid += 2;
 }
}

Of course, doing this on a CPU would require considerably more code than we
have included in this example. You would need to provide a reasonable amount of
infrastructure to create the worker threads that execute the function add() as
well as make the assumption that each thread would execute in parallel, a sched-
uling assumption that is unfortunately not always true.

GPu vector sums

We can accomplish the same addition very similarly on a GPU by writing add()
as a device function. This should look similar to code you saw in the previous
chapter. But before we look at the device code, we present main(). Although the
GPU implementation of main() is different from the corresponding CPU version,
nothing here should look new:

#include "../common/book.h"

#define N 10

int main(void) {

 int a[N], b[N], c[N];

 int *dev_a, *dev_b, *dev_c;

 // allocate the memory on the GPU

 HANDLE_ERROR(cudaMalloc((void**)&dev_a, N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_b, N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_c, N * sizeof(int)));

 // fill the arrays 'a' and 'b' on the CPU

 for (int i=0; i<N; i++) {

 a[i] = -i;

 b[i] = i * i;

 }

PArAllel ProGrAmmInG In cudA c

42

 // copy the arrays 'a' and 'b' to the GPU

 HANDLE_ERROR(cudaMemcpy(dev_a, a, N * sizeof(int),

 cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMemcpy(dev_b, b, N * sizeof(int),

 cudaMemcpyHostToDevice));

 add<<<N,1>>>(dev_a, dev_b, dev_c);

 // copy the array 'c' back from the GPU to the CPU

 HANDLE_ERROR(cudaMemcpy(c, dev_c, N * sizeof(int),

 cudaMemcpyDeviceToHost));

 // display the results

 for (int i=0; i<N; i++) {

 printf("%d + %d = %d\n", a[i], b[i], c[i]);

 }

 // free the memory allocated on the GPU

 cudaFree(dev_a);

 cudaFree(dev_b);

 cudaFree(dev_c);

 return 0;

}

You will notice some common patterns that we employ again:

We allocate three arrays on the device using calls to • cudaMalloc(): two
arrays, dev_a and dev_b, to hold inputs, and one array, dev_c, to hold the
result.

Because we are environmentally conscientious coders, we clean up after •
ourselves with cudaFree().

Using • cudaMemcpy(), we copy the input data to the device with the parameter
cudaMemcpyHostToDevice and copy the result data back to the host with
cudaMemcpyDeviceToHost.

We execute the device code in • add() from the host code in main() using the
triple angle bracket syntax.

cudA PArAllel ProGrAmmInG

43

4.2 CUDA PARALLEL PROGRAMMING

As an aside, you may be wondering why we fill the input arrays on the CPU. There
is no reason in particular why we need to do this. In fact, the performance of this
step would be faster if we filled the arrays on the GPU. But we intend to show how
a particular operation, namely, the addition of two vectors, can be implemented
on a graphics processor. As a result, we ask you to imagine that this is but one
step of a larger application where the input arrays a[] and b[] have been
generated by some other algorithm or loaded from the hard drive by the user. In
summary, it will suffice to pretend that this data appeared out of nowhere and
now we need to do something with it.

Moving on, our add() routine looks similar to its corresponding CPU
implementation:

__global__ void add(int *a, int *b, int *c) {

 int tid = blockIdx.x; // handle the data at this index

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

Again we see a common pattern with the function add():

We have written a function called • add() that executes on the device. We
accomplished this by taking C code and adding a __global__ qualifier to
the function name.

So far, there is nothing new in this example except it can do more than add 2 and
7. However, there are two noteworthy components of this example: The param-
eters within the triple angle brackets and the code contained in the kernel itself
both introduce new concepts.

Up to this point, we have always seen kernels launched in the following form:

 kernel<<<1,1>>>(param1, param2, …);

But in this example we are launching with a number in the angle brackets that is
not 1:

 add<<<N,1>>>(dev _ a, dev _ b, dev _ c);

What gives?

PArAllel ProGrAmmInG In cudA c

44

Recall that we left those two numbers in the angle brackets unexplained; we
stated vaguely that they were parameters to the runtime that describe how to
launch the kernel. Well, the first number in those parameters represents the
number of parallel blocks in which we would like the device to execute our kernel.
In this case, we’re passing the value N for this parameter.

For example, if we launch with kernel<<<2,1>>>(), you can think of the
runtime creating two copies of the kernel and running them in parallel. We call
each of these parallel invocations a block. With kernel<<<256,1>>>(), you
would get 256 blocks running on the GPU. Parallel programming has never been
easier.

But this raises an excellent question: The GPU runs N copies of our kernel code,
but how can we tell from within the code which block is currently running? This
question brings us to the second new feature of the example, the kernel code
itself. Specifically, it brings us to the variable blockIdx.x:

__global__ void add(int *a, int *b, int *c) {

 int tid = blockIdx.x; // handle the data at this index

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

At first glance, it looks like this variable should cause a syntax error at compile
time since we use it to assign the value of tid, but we have never defined it.
However, there is no need to define the variable blockIdx; this is one of the
built-in variables that the CUDA runtime defines for us. Furthermore, we use this
variable for exactly what it sounds like it means. It contains the value of the block
index for whichever block is currently running the device code.

Why, you may then ask, is it not just blockIdx? Why blockIdx.x? As it turns
out, CUDA C allows you to define a group of blocks in two dimensions. For prob-
lems with two-dimensional domains, such as matrix math or image processing,
it is often convenient to use two-dimensional indexing to avoid annoying transla-
tions from linear to rectangular indices. Don’t worry if you aren’t familiar with
these problem types; just know that using two-dimensional indexing can some-
times be more convenient than one-dimensional indexing. But you never have to
use it. We won’t be offended.

cudA PArAllel ProGrAmmInG

45

4.2 CUDA PARALLEL PROGRAMMING

When we launched the kernel, we specified N as the number of parallel blocks.
We call the collection of parallel blocks a grid. This specifies to the runtime
system that we want a one-dimensional grid of N blocks (scalar values are
interpreted as one-dimensional). These threads will have varying values for
blockIdx.x, the first taking value 0 and the last taking value N-1. So, imagine
four blocks, all running through the same copy of the device code but having
different values for the variable blockIdx.x. This is what the actual code being
executed in each of the four parallel blocks looks like after the runtime substi-
tutes the appropriate block index for blockIdx.x:

bloCK 1 bloCK 2

__global__ void

add(int *a, int *b, int *c) {

 int tid = 0;

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

__global__ void

add(int *a, int *b, int *c) {

 int tid = 1;

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

bloCK 3 bloCK 4

__global__ void

add(int *a, int *b, int *c) {

 int tid = 2;

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

__global__ void

add(int *a, int *b, int *c) {

 int tid = 3;

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

If you recall the CPU-based example with which we began, you will recall that we
needed to walk through indices from 0 to N-1 in order to sum the two vectors.
Since the runtime system is already launching a kernel where each block will
have one of these indices, nearly all of this work has already been done for us.
Because we’re something of a lazy lot, this is a good thing. It affords us more time
to blog, probably about how lazy we are.

The last remaining question to be answered is, why do we check whether tid
is less than N? It should always be less than N, since we’ve specifically launched
our kernel such that this assumption holds. But our desire to be lazy also makes
us paranoid about someone breaking an assumption we’ve made in our code.
Breaking code assumptions means broken code. This means bug reports, late

PArAllel ProGrAmmInG In cudA c

46

nights tracking down bad behavior, and generally lots of activities that stand
between us and our blog. If we didn’t check that tid is less than N and subse-
quently fetched memory that wasn’t ours, this would be bad. In fact, it could
possibly kill the execution of your kernel, since GPUs have sophisticated memory
management units that kill processes that seem to be violating memory rules.

If you encounter problems like the ones just mentioned, one of the HANDLE_
ERROR() macros that we’ve sprinkled so liberally throughout the code will
detect and alert you to the situation. As with traditional C programming, the
lesson here is that functions return error codes for a reason. Although it is
always tempting to ignore these error codes, we would love to save you the hours
of pain through which we have suffered by urging that you check the results of
every operation that can fail. As is often the case, the presence of these errors
will not prevent you from continuing the execution of your application, but they
will most certainly cause all manner of unpredictable and unsavory side effects
downstream.

At this point, you’re running code in parallel on the GPU. Perhaps you had heard
this was tricky or that you had to understand computer graphics to do general-
purpose programming on a graphics processor. We hope you are starting to see
how CUDA C makes it much easier to get started writing parallel code on a GPU.
We used the example only to sum vectors of length 10. If you would like to see
how easy it is to generate a massively parallel application, try changing the 10 in
the line #define N 10 to 10000 or 50000 to launch tens of thousands of parallel
blocks. Be warned, though: No dimension of your launch of blocks may exceed
65,535. This is simply a hardware-imposed limit, so you will start to see failures if
you attempt launches with more blocks than this. In the next chapter, we will see
how to work within this limitation.

A FUN EXAMPLE4.2.2

We don’t mean to imply that adding vectors is anything less than fun, but the
following example will satisfy those looking for some flashy examples of parallel
CUDA C.

The following example will demonstrate code to draw slices of the Julia Set. For
the uninitiated, the Julia Set is the boundary of a certain class of functions over
complex numbers. Undoubtedly, this sounds even less fun than vector addi-
tion and matrix multiplication. However, for almost all values of the function’s

cudA PArAllel ProGrAmmInG

47

4.2 CUDA PARALLEL PROGRAMMING

 parameters, this boundary forms a fractal, one of the most interesting and beau-
tiful curiosities of mathematics.

The calculations involved in generating such a set are quite simple. At its heart,
the Julia Set evaluates a simple iterative equation for points in the complex plane.
A point is not in the set if the process of iterating the equation diverges for that
point. That is, if the sequence of values produced by iterating the equation grows
toward infinity, a point is considered outside the set. Conversely, if the values
taken by the equation remain bounded, the point is in the set.

Computationally, the iterative equation in question is remarkably simple, as
shown in Equation 4.1.

Equation 4.1

Computing an iteration of Equation 4.1 would therefore involve squaring the
current value and adding a constant to get the next value of the equation.

cPu JulIA set

We will examine a source listing now that will compute and visualize the Julia
Set. Since this is a more complicated program than we have studied so far, we will
split it into pieces here. Later in the chapter, you will see the entire source listing.

int main(void) {

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *ptr = bitmap.get_ptr();

 kernel(ptr);

 bitmap.display_and_exit();

}

Our main routine is remarkably simple. It creates the appropriate size bitmap
image using a utility library provided. Next, it passes a pointer to the bitmap data
to the kernel function.

PArAllel ProGrAmmInG In cudA c

48

void kernel(unsigned char *ptr){

 for (int y=0; y<DIM; y++) {

 for (int x=0; x<DIM; x++) {

 int offset = x + y * DIM;

 int juliaValue = julia(x, y);

 ptr[offset*4 + 0] = 255 * juliaValue;

 ptr[offset*4 + 1] = 0;

 ptr[offset*4 + 2] = 0;

 ptr[offset*4 + 3] = 255;

 }

 }

 }

The computation kernel does nothing more than iterate through all points we
care to render, calling julia()on each to determine membership in the Julia
Set. The function julia()will return 1 if the point is in the set and 0 if it is not
in the set. We set the point’s color to be red if julia()returns 1 and black if it
returns 0. These colors are arbitrary, and you should feel free to choose a color
scheme that matches your personal aesthetics.

int julia(int x, int y) {

 const float scale = 1.5;

 float jx = scale * (float)(DIM/2 - x)/(DIM/2);

 float jy = scale * (float)(DIM/2 - y)/(DIM/2);

 cuComplex c(-0.8, 0.156);

 cuComplex a(jx, jy);

 int i = 0;

 for (i=0; i<200; i++) {

 a = a * a + c;

 if (a.magnitude2() > 1000)

 return 0;

 }

 return 1;

}

cudA PArAllel ProGrAmmInG

49

4.2 CUDA PARALLEL PROGRAMMING

This function is the meat of the example. We begin by translating our pixel
coordinate to a coordinate in complex space. To center the complex plane at the
image center, we shift by DIM/2. Then, to ensure that the image spans the range
of -1.0 to 1.0, we scale the image coordinate by DIM/2. Thus, given an image
point at (x,y), we get a point in complex space at ((DIM/2 – x)/(DIM/2),
((DIM/2 – y)/(DIM/2)).

Then, to potentially zoom in or out, we introduce a scale factor. Currently, the scale
is hard-coded to be 1.5, but you should tweak this parameter to zoom in or out. If you
are feeling really ambitious, you could make this a command-line parameter.

After obtaining the point in complex space, we then need to determine whether
the point is in or out of the Julia Set. If you recall the previous section, we do this
by computing the values of the iterative equation Zn+1 = zn

2 + C. Since C is some
arbitrary complex-valued constant, we have chosen -0.8 + 0.156i because it
happens to yield an interesting picture. You should play with this constant if you
want to see other versions of the Julia Set.

In the example, we compute 200 iterations of this function. After each iteration,
we check whether the magnitude of the result exceeds some threshold (1,000 for
our purposes). If so, the equation is diverging, and we can return 0 to indicate that
the point is not in the set. On the other hand, if we finish all 200 iterations and the
magnitude is still bounded under 1,000, we assume that the point is in the set,
and we return 1 to the caller, kernel().

Since all the computations are being performed on complex numbers, we define
a generic structure to store complex numbers.

struct cuComplex {

 float r;

 float i;

 cuComplex(float a, float b) : r(a), i(b) {}

 float magnitude2(void) { return r * r + i * i; }

 cuComplex operator*(const cuComplex& a) {

 return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);

 }

 cuComplex operator+(const cuComplex& a) {

 return cuComplex(r+a.r, i+a.i);

 }

};

PArAllel ProGrAmmInG In cudA c

50

The class represents complex numbers with two data elements: a single-
 precision real component r and a single-precision imaginary component i.
The class defines addition and multiplication operators that combine complex
numbers as expected. (If you are completely unfamiliar with complex numbers,
you can get a quick primer online.) Finally, we define a method that returns the
magnitude of the complex number.

GPu JulIA set

The device implementation is remarkably similar to the CPU version, continuing a
trend you may have noticed.

int main(void) {

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *dev_bitmap;

 HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap,

 bitmap.image_size()));

 dim3 grid(DIM,DIM);

 kernel<<<grid,1>>>(dev_bitmap);

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(),

 dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

 bitmap.display_and_exit();

 cudaFree(dev_bitmap);

}

This version of main() looks much more complicated than the CPU version, but
the flow is actually identical. Like with the CPU version, we create a DIM x DIM

cudA PArAllel ProGrAmmInG

51

4.2 CUDA PARALLEL PROGRAMMING

bitmap image using our utility library. But because we will be doing computa-
tion on a GPU, we also declare a pointer called dev_bitmap to hold a copy
of the data on the device. And to hold data, we need to allocate memory using
cudaMalloc().

We then run our kernel() function exactly like in the CPU version, although
now it is a __global__ function, meaning it will run on the GPU. As with the
CPU example, we pass kernel() the pointer we allocated in the previous line to
store the results. The only difference is that the memory resides on the GPU now,
not on the host system.

The most significant difference is that we specify how many parallel blocks on
which to execute the function kernel(). Because each point can be computed
independently of every other point, we simply specify one copy of the function for
each point we want to compute. We mentioned that for some problem domains,
it helps to use two-dimensional indexing. Unsurprisingly, computing function
values over a two-dimensional domain such as the complex plane is one of these
problems. So, we specify a two-dimensional grid of blocks in this line:

 dim3 grid(DIM,DIM);

The type dim3 is not a standard C type, lest you feared you had forgotten some
key pieces of information. Rather, the CUDA runtime header files define some
convenience types to encapsulate multidimensional tuples. The type dim3 repre-
sents a three-dimensional tuple that will be used to specify the size of our launch.
But why do we use a three-dimensional value when we oh-so-clearly stated that
our launch is a two-dimensional grid?

Frankly, we do this because a three-dimensional, dim3 value is what the CUDA
runtime expects. Although a three-dimensional launch grid is not currently
supported, the CUDA runtime still expects a dim3 variable where the last compo-
nent equals 1. When we initialize it with only two values, as we do in the state-
ment dim3 grid(DIM,DIM), the CUDA runtime automatically fills the third
dimension with the value 1, so everything here will work as expected. Although
it’s possible that NVIDIA will support a three-dimensional grid in the future, for
now we’ll just play nicely with the kernel launch API because when coders and
APIs fight, the API always wins.

PArAllel ProGrAmmInG In cudA c

52

We then pass our dim3 variable grid to the CUDA runtime in this line:

 kernel<<<grid,1>>>(dev _ bitmap);

Finally, a consequence of the results residing on the device is that after executing
kernel(), we have to copy the results back to the host. As we learned in
previous chapters, we accomplish this with a call to cudaMemcpy(), specifying
the direction cudaMemcpyDeviceToHost as the last argument.

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(),

 dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

One of the last wrinkles in the difference of implementation comes in the imple-
mentation of kernel().

__global__ void kernel(unsigned char *ptr) {

 // map from threadIdx/BlockIdx to pixel position

 int x = blockIdx.x;

 int y = blockIdx.y;

 int offset = x + y * gridDim.x;

 // now calculate the value at that position

 int juliaValue = julia(x, y);

 ptr[offset*4 + 0] = 255 * juliaValue;

 ptr[offset*4 + 1] = 0;

 ptr[offset*4 + 2] = 0;

 ptr[offset*4 + 3] = 255;

}

First, we need kernel() to be declared as a __global__ function so it runs
on the device but can be called from the host. Unlike the CPU version, we no
longer need nested for() loops to generate the pixel indices that get passed

cudA PArAllel ProGrAmmInG

53

4.2 CUDA PARALLEL PROGRAMMING

to julia(). As with the vector addition example, the CUDA runtime generates
these indices for us in the variable blockIdx. This works because we declared
our grid of blocks to have the same dimensions as our image, so we get one block
for each pair of integers (x,y) between (0,0) and (DIM-1, DIM-1).

Next, the only additional information we need is a linear offset into our output
buffer, ptr. This gets computed using another built-in variable, gridDim. This
variable is a constant across all blocks and simply holds the dimensions of the
grid that was launched. In this example, it will always be the value (DIM, DIM).
So, multiplying the row index by the grid width and adding the column index will
give us a unique index into ptr that ranges from 0 to (DIM*DIM-1).

 int offset = x + y * gridDim.x;

Finally, we examine the actual code that determines whether a point is in or out
of the Julia Set. This code should look identical to the CPU version, continuing a
trend we have seen in many examples now.

__device__ int julia(int x, int y) {

 const float scale = 1.5;

 float jx = scale * (float)(DIM/2 - x)/(DIM/2);

 float jy = scale * (float)(DIM/2 - y)/(DIM/2);

 cuComplex c(-0.8, 0.156);

 cuComplex a(jx, jy);

 int i = 0;

 for (i=0; i<200; i++) {

 a = a * a + c;

 if (a.magnitude2() > 1000)

 return 0;

 }

 return 1;

}

PArAllel ProGrAmmInG In cudA c

54

Again, we define a cuComplex structure that defines a method for storing a
complex number with single-precision floating-point components. The structure
also defines addition and multiplication operators as well as a function to return
the magnitude of the complex value.

struct cuComplex {

 float r;

 float i;

 cuComplex(float a, float b) : r(a), i(b) {}

 __device__ float magnitude2(void) {

 return r * r + i * i;

 }

 __device__ cuComplex operator*(const cuComplex& a) {

 return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);

 }

 __device__ cuComplex operator+(const cuComplex& a) {

 return cuComplex(r+a.r, i+a.i);

 }

};

Notice that we use the same language constructs in CUDA C that we use in our
CPU version. The one difference is the qualifier __device__, which indicates
that this code will run on a GPU and not on the host. Recall that because these
functions are declared as __device__ functions, they will be callable only from
other __device__ functions or from __global__ functions.

Since we’ve interrupted the code with commentary so frequently, here is the
entire source listing from start to finish:

#include "../common/book.h"

#include "../common/cpu_bitmap.h"

#define DIM 1000

cudA PArAllel ProGrAmmInG

55

4.2 CUDA PARALLEL PROGRAMMING

struct cuComplex {

 float r;

 float i;

 cuComplex(float a, float b) : r(a), i(b) {}

 __device__ float magnitude2(void) {

 return r * r + i * i;

 }

 __device__ cuComplex operator*(const cuComplex& a) {

 return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);

 }

 __device__ cuComplex operator+(const cuComplex& a) {

 return cuComplex(r+a.r, i+a.i);

 }

};

__device__ int julia(int x, int y) {

 const float scale = 1.5;

 float jx = scale * (float)(DIM/2 - x)/(DIM/2);

 float jy = scale * (float)(DIM/2 - y)/(DIM/2);

 cuComplex c(-0.8, 0.156);

 cuComplex a(jx, jy);

 int i = 0;

 for (i=0; i<200; i++) {

 a = a * a + c;

 if (a.magnitude2() > 1000)

 return 0;

 }

 return 1;

}

PArAllel ProGrAmmInG In cudA c

56

__global__ void kernel(unsigned char *ptr) {

 // map from threadIdx/BlockIdx to pixel position

 int x = blockIdx.x;

 int y = blockIdx.y;

 int offset = x + y * gridDim.x;

 // now calculate the value at that position

 int juliaValue = julia(x, y);

 ptr[offset*4 + 0] = 255 * juliaValue;

 ptr[offset*4 + 1] = 0;

 ptr[offset*4 + 2] = 0;

 ptr[offset*4 + 3] = 255;

}

int main(void) {

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *dev_bitmap;

 HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap,

 bitmap.image_size()));

 dim3 grid(DIM,DIM);

 kernel<<<grid,1>>>(dev_bitmap);

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(), dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

 bitmap.display_and_exit();

 HANDLE_ERROR(cudaFree(dev_bitmap));

}

When you run the application, you should see an animating visualization of the
Julia Set. To convince you that it has earned the title “A Fun Example,” Figure 4.2
shows a screenshot taken from this application.

CHAPTER REVIEW

57

4.3 CHAPTER REVIEW

Figure 4.2 A screenshot from the GPU Julia Set application

Chapter Review4.3
Congratulations, you can now write, compile, and run massively parallel code
on a graphics processor! You should go brag to your friends. And if they are still
under the misconception that GPU computing is exotic and difficult to master,
they will be most impressed. The ease with which you accomplished it will be
our secret. If they’re people you trust with your secrets, suggest that they buy the
book, too.

We have so far looked at how to instruct the CUDA runtime to execute multiple
copies of our program in parallel on what we called blocks. We called the collec-
tion of blocks we launch on the GPU a grid. As the name might imply, a grid can
be either a one- or two-dimensional collection of blocks. Each copy of the kernel
can determine which block it is executing with the built-in variable blockIdx.
Likewise, it can determine the size of the grid by using the built-in variable
gridDim. Both of these built-in variables proved useful within our kernel to
calculate the data index for which each block is responsible.

This page intentionally left blank

59

Chapter 5

thread Cooperation

We have now written our first program using CUDA C as well as have seen how
to write code that executes in parallel on a GPU. This is an excellent start! But
arguably one of the most important components to parallel programming is
the means by which the parallel processing elements cooperate on solving a
problem. Rare are the problems where every processor can compute results
and terminate execution without a passing thought as to what the other proces-
sors are doing. For even moderately sophisticated algorithms, we will need the
parallel copies of our code to communicate and cooperate. So far, we have not
seen any mechanisms for accomplishing this communication between sections
of CUDA C code executing in parallel. Fortunately, there is a solution, one that we
will begin to explore in this chapter.

THREAD COOPERATION

60

Chapter Objectives5.1
Through the course of this chapter, you will accomplish the following:

You will learn about what CUDA C calls • threads.

You will learn a mechanism for different threads to communicate with each other.•

You will learn a mechanism to synchronize the parallel execution of different •
threads.

Splitting Parallel Blocks5.2
In the previous chapter, we looked at how to launch parallel code on the GPU. We
did this by instructing the CUDA runtime system on how many parallel copies of
our kernel to launch. We call these parallel copies blocks.

The CUDA runtime allows these blocks to be split into threads. Recall that when
we launched multiple parallel blocks, we changed the first argument in the angle
brackets from 1 to the number of blocks we wanted to launch. For example, when
we studied vector addition, we launched a block for each element in the vector of
size N by calling this:

 add<<<N,1>>>(dev_a, dev_b, dev_c);

Inside the angle brackets, the second parameter actually represents the number
of threads per block we want the CUDA runtime to create on our behalf. To this
point, we have only ever launched one thread per block. In the previous example,
we launched the following:

N blocks x 1 thread/block = N parallel threads

So really, we could have launched N/2 blocks with two threads per block, N/4
blocks with four threads per block, and so on. Let’s revisit our vector addition
example armed with this new information about the capabilities of CUDA C.

VECTOR SUMS: REDUX5.2.1

We endeavor to accomplish the same task as we did in the previous chapter. That
is, we want to take two input vectors and store their sum in a third output vector.
However, this time we will use threads instead of blocks to accomplish this.

SPLITTING PARALLEL BLOCKS

61

5.2 SPLITTING PARALLEL BLOCKS

You may be wondering, what is the advantage of using threads rather than
blocks? Well, for now, there is no advantage worth discussing. But parallel
threads within a block will have the ability to do things that parallel blocks cannot
do. So for now, be patient and humor us while we walk through a parallel thread
version of the parallel block example from the previous chapter.

GPU VECTOR SUMS USING THREADS

We will start by addressing the two changes of note when moving from parallel
blocks to parallel threads. Our kernel invocation will change from one that
launches N blocks of one thread apiece:

 add<<<N,1>>>(dev _ a, dev _ b, dev _ c);

to a version that launches N threads, all within one block:

 add<<<1,N>>>(dev _ a, dev _ b, dev _ c);

The only other change arises in the method by which we index our data.
Previously, within our kernel we indexed the input and output data by block index.

 int tid = blockIdx.x;

The punch line here should not be a surprise. Now that we have only a single
block, we have to index the data by thread index.

 int tid = threadIdx.x;

These are the only two changes required to move from a parallel block imple-
mentation to a parallel thread implementation. For completeness, here is the
entire source listing with the changed lines in bold:

#include "../common/book.h"

#define N 10

__global__ void add(int *a, int *b, int *c) {

 int tid = threadIdx.x;

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

THREAD COOPERATION

62

int main(void) {

 int a[N], b[N], c[N];

 int *dev_a, *dev_b, *dev_c;

 // allocate the memory on the GPU

 HANDLE_ERROR(cudaMalloc((void**)&dev_a, N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_b, N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_c, N * sizeof(int)));

 // fill the arrays ‘a’ and ‘b’ on the CPU

 for (int i=0; i<N; i++) {

 a[i] = i;

 b[i] = i * i;

 }

 // copy the arrays ‘a’ and ‘b’ to the GPU

 HANDLE_ERROR(cudaMemcpy(dev_a,

 a,

 N * sizeof(int),

 cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMemcpy(dev_b,

 b,

 N * sizeof(int),

 cudaMemcpyHostToDevice));

 add<<<1,N>>>(dev_a, dev_b, dev_c);

 // copy the array ‘c’ back from the GPU to the CPU

 HANDLE_ERROR(cudaMemcpy(c,

 dev_c,

 N * sizeof(int),

 cudaMemcpyDeviceToHost));

 // display the results

 for (int i=0; i<N; i++) {

 printf(“%d + %d = %d\n”, a[i], b[i], c[i]);

 }

SPLITTING PARALLEL BLOCKS

63

5.2 SPLITTING PARALLEL BLOCKS

 // free the memory allocated on the GPU

 cudaFree(dev_a);

 cudaFree(dev_b);

 cudaFree(dev_c);

 return 0;

}

Pretty simple stuff, right? In the next section, we’ll see one of the limitations
of this thread-only approach. And of course, later we’ll see why we would even
bother splitting blocks into other parallel components.

GPU SUMS OF A LONGER VECTOR

In the previous chapter, we noted that the hardware limits the number of blocks
in a single launch to 65,535. Similarly, the hardware limits the number of threads
per block with which we can launch a kernel. Specifically, this number cannot
exceed the value specified by the maxThreadsPerBlock field of the device
properties structure we looked at in Chapter 3. For many of the graphics proces-
sors currently available, this limit is 512 threads per block, so how would we use
a thread-based approach to add two vectors of size greater than 512? We will
have to use a combination of threads and blocks to accomplish this.

As before, this will require two changes: We will have to change the index compu-
tation within the kernel, and we will have to change the kernel launch itself.

Now that we have multiple blocks and threads, the indexing will start to look
similar to the standard method for converting from a two-dimensional index
space to a linear space.

 int tid = threadIdx.x + blockIdx.x * blockDim.x;

This assignment uses a new built-in variable, blockDim. This variable is a
constant for all blocks and stores the number of threads along each dimen-
sion of the block. Since we are using a one-dimensional block, we refer only to
blockDim.x. If you recall, gridDim stored a similar value, but it stored the
number of blocks along each dimension of the entire grid. Moreover, gridDim is
two-dimensional, whereas blockDim is actually three-dimensional. That is, the
CUDA runtime allows you to launch a two-dimensional grid of blocks where each
block is a three-dimensional array of threads. Yes, this is a lot of dimensions, and
it is unlikely you will regularly need the five degrees of indexing freedom afforded
you, but they are available if so desired.

THREAD COOPERATION

64

Indexing the data in a linear array using the previous assignment actually is quite
intuitive. If you disagree, it may help to think about your collection of blocks of
threads spatially, similar to a two-dimensional array of pixels. We depict this
arrangement in Figure 5.1.

If the threads represent columns and the blocks represent rows, we can get a
unique index by taking the product of the block index with the number of threads
in each block and adding the thread index within the block. This is identical to the
method we used to linearize the two-dimensional image index in the Julia Set
example.

 int offset = x + y * DIM;

Here, DIM is the block dimension (measured in threads), y is the block index,
and x is the thread index within the block. Hence, we arrive at the index:
tid = threadIdx.x + blockIdx.x * blockDim.x.

The other change is to the kernel launch itself. We still need N parallel threads to
launch, but we want them to launch across multiple blocks so we do not hit the
512-thread limitation imposed upon us. One solution is to arbitrarily set the block
size to some fixed number of threads; for this example, let’s use 128 threads per
block. Then we can just launch N/128 blocks to get our total of N threads running.

The wrinkle here is that N/128 is an integer division. This implies that if N were
127, N/128 would be zero, and we will not actually compute anything if we launch

Thread 0 Thread 1 Thread 2 Thread 3

Thread 0 Thread 1 Thread 2 Thread 3

Thread 0 Thread 1 Thread 2 Thread 3

Thread 0

Block 0

Block 1

Block 2

Block 3 Thread 1 Thread 2 Thread 3

Figure 5.1 A two-dimensional arrangement of a collection of blocks and threads

SPLITTING PARALLEL BLOCKS

65

5.2 SPLITTING PARALLEL BLOCKS

zero threads. In fact, we will launch too few threads whenever N is not an exact
multiple of 128. This is bad. We actually want this division to round up.

There is a common trick to accomplish this in integer division without calling
ceil(). We actually compute (N+127)/128 instead of N/128. Either you can
take our word that this will compute the smallest multiple of 128 greater than or
equal to N or you can take a moment now to convince yourself of this fact.

We have chosen 128 threads per block and therefore use the following kernel
launch:

 add<<< (N+127)/128, 128 >>>(dev _ a, dev _ b, dev _ c);

Because of our change to the division that ensures we launch enough threads, we
will actually now launch too many threads when N is not an exact multiple of 128.
But there is a simple remedy to this problem, and our kernel already takes care of
it. We have to check whether a thread’s offset is actually between 0 and N before
we use it to access our input and output arrays:

 if (tid < N)

 c[tid] = a[tid] + b[tid];

Thus, when our index overshoots the end of our array, as will always happen
when we launch a nonmultiple of 128, we automatically refrain from performing
the calculation. More important, we refrain from reading and writing memory off
the end of our array.

GPU SUMS OF ARBITRARILY LONG VECTORS

We were not completely forthcoming when we first discussed launching parallel
blocks on a GPU. In addition to the limitation on thread count, there is also a
hardware limitation on the number of blocks (albeit much greater than the thread
limitation). As we’ve mentioned previously, neither dimension of a grid of blocks
may exceed 65,535.

So, this raises a problem with our current vector addition implementation. If
we launch N/128 blocks to add our vectors, we will hit launch failures when
our vectors exceed 65,535 * 128 = 8,388,480 elements. This seems like a large
number, but with current memory capacities between 1GB and 4GB, the high-end
graphics processors can hold orders of magnitude more data than vectors with
8 million elements.

THREAD COOPERATION

66

Fortunately, the solution to this issue is extremely simple. We first make a change
to our kernel.

__global__ void add(int *a, int *b, int *c) {

 int tid = threadIdx.x + blockIdx.x * blockDim.x;

 while (tid < N) {

 c[tid] = a[tid] + b[tid];

 tid += blockDim.x * gridDim.x;

 }

}

This looks remarkably like our original version of vector addition! In fact, compare
it to the following CPU implementation from the previous chapter:

void add(int *a, int *b, int *c) {

 int tid = 0; // this is CPU zero, so we start at zero

 while (tid < N) {

 c[tid] = a[tid] + b[tid];

 tid += 1; // we have one CPU, so we increment by one

 }

}

Here we also used a while() loop to iterate through the data. Recall that we
claimed that rather than incrementing the array index by 1, a multi-CPU or multi-
core version could increment by the number of processors we wanted to use. We
will now use that same principle in the GPU version.

In the GPU implementation, we consider the number of parallel threads launched
to be the number of processors. Although the actual GPU may have fewer (or
more) processing units than this, we think of each thread as logically executing
in parallel and then allow the hardware to schedule the actual execution.
Decoupling the parallelization from the actual method of hardware execution is
one of burdens that CUDA C lifts off a software developer’s shoulders. This should
come as a relief, considering current NVIDIA hardware can ship with anywhere
between 8 and 480 arithmetic units per chip!

Now that we understand the principle behind this implementation, we just need
to understand how we determine the initial index value for each parallel thread

SPLITTING PARALLEL BLOCKS

67

5.2 SPLITTING PARALLEL BLOCKS

and how we determine the increment. We want each parallel thread to start on
a different data index, so we just need to take our thread and block indexes and
linearize them as we saw in the “GPU Sums of a Longer Vector” section. Each
thread will start at an index given by the following:

 int tid = threadIdx.x + blockIdx.x * blockDim.x;

After each thread finishes its work at the current index, we need to increment
each of them by the total number of threads running in the grid. This is simply the
number of threads per block multiplied by the number of blocks in the grid, or
blockDim.x * gridDim.x. Hence, the increment step is as follows:

 tid += blockDim.x * gridDim.x;

We are almost there! The only remaining piece is to fix the launch
itself. If you remember, we took this detour because the launch
add<<<(N+127)/128,128>>>(dev_a, dev_b, dev_c) will fail when
(N+127)/128 is greater than 65,535. To ensure we never launch too many blocks,
we will just fix the number of blocks to some reasonably small value. Since we like
copying and pasting so much, we will use 128 blocks, each with 128 threads.

 add<<<128,128>>>(dev _ a, dev _ b, dev _ c);

You should feel free to adjust these values however you see fit, provided that
your values remain within the limits we’ve discussed. Later in the book, we will
discuss the potential performance implications of these choices, but for now it
suffices to choose 128 threads per block and 128 blocks. Now we can add vectors
of arbitrary length, limited only by the amount of RAM we have on our GPU. Here
is the entire source listing:

#include "../common/book.h"

#define N (33 * 1024)

__global__ void add(int *a, int *b, int *c) {

 int tid = threadIdx.x + blockIdx.x * blockDim.x;

 while (tid < N) {

 c[tid] = a[tid] + b[tid];

 tid += blockDim.x * gridDim.x;

 }

}

THREAD COOPERATION

68

int main(void) {

 int a[N], b[N], c[N];

 int *dev_a, *dev_b, *dev_c;

 // allocate the memory on the GPU

 HANDLE_ERROR(cudaMalloc((void**)&dev_a, N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_b, N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_c, N * sizeof(int)));

 // fill the arrays ‘a’ and ‘b’ on the CPU

 for (int i=0; i<N; i++) {

 a[i] = i;

 b[i] = i * i;

 }

 // copy the arrays 'a' and 'b' to the GPU

 HANDLE_ERROR(cudaMemcpy(dev_a,

 a,

 N * sizeof(int),

 cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMemcpy(dev_b,

 b,

 N * sizeof(int),

 cudaMemcpyHostToDevice));

 add<<<128,128>>>(dev_a, dev_b, dev_c);

 // copy the array 'c' back from the GPU to the CPU

 HANDLE_ERROR(cudaMemcpy(c,

 dev_c,

 N * sizeof(int),

 cudaMemcpyDeviceToHost));

 // verify that the GPU did the work we requested

 bool success = true;

 for (int i=0; i<N; i++) {

 if ((a[i] + b[i]) != c[i]) {

 printf(“Error: %d + %d != %d\n”, a[i], b[i], c[i]);

 success = false;

SPLITTING PARALLEL BLOCKS

69

5.2 SPLITTING PARALLEL BLOCKS

 }

 }

 if (success) printf("We did it!\n");

 // free the memory allocated on the GPU

 cudaFree(dev_a);

 cudaFree(dev_b);

 cudaFree(dev_c);

 return 0;

}

GPU RIPPLE USING THREADS5.2.2

As with the previous chapter, we will reward your patience with vector addition by
presenting a more fun example that demonstrates some of the techniques we’ve
been using. We will again use our GPU computing power to generate pictures
procedurally. But to make things even more interesting, this time we will animate
them. But don’t worry, we’ve packaged all the unrelated animation code into
helper functions so you won’t have to master any graphics or animation.

struct DataBlock {

 unsigned char *dev_bitmap;

 CPUAnimBitmap *bitmap;

};

// clean up memory allocated on the GPU

void cleanup(DataBlock *d) {

 cudaFree(d->dev_bitmap);

}

int main(void) {

 DataBlock data;

 CPUAnimBitmap bitmap(DIM, DIM, &data);

 data.bitmap = &bitmap;

THREAD COOPERATION

70

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_bitmap,

 bitmap.image_size()));

 bitmap.anim_and_exit((void (*)(void*,int))generate_frame,

 (void (*)(void*))cleanup);

}

Most of the complexity of main() is hidden in the helper class
CPUAnimBitmap. You will notice that we again have a pattern of doing a
 cudaMalloc(), executing device code that uses the allocated memory, and
then cleaning up with cudaFree(). This should be old hat to you by now.

In this example, we have slightly convoluted the means by which we accomplish
the middle step, “executing device code that uses the allocated memory.” We
pass the anim_and_exit() method a function pointer to generate_frame().
This function will be called by the class every time it wants to generate a new
frame of the animation.

void generate_frame(DataBlock *d, int ticks) {

 dim3 blocks(DIM/16,DIM/16);

 dim3 threads(16,16);

 kernel<<<blocks,threads>>>(d->dev_bitmap, ticks);

 HANDLE_ERROR(cudaMemcpy(d->bitmap->get_ptr(),

 d->dev_bitmap,

 d->bitmap->image_size(),

 cudaMemcpyDeviceToHost));

}

Although this function consists only of four lines, they all involve important
CUDA C concepts. First, we declare two two-dimensional variables, blocks
and threads. As our naming convention makes painfully obvious, the variable
blocks represents the number of parallel blocks we will launch in our grid. The
variable threads represents the number of threads we will launch per block.
Because we are generating an image, we use two-dimensional indexing so that
each thread will have a unique (x,y) index that we can easily put into correspon-
dence with a pixel in the output image. We have chosen to use blocks that consist

SPLITTING PARALLEL BLOCKS

71

5.2 SPLITTING PARALLEL BLOCKS

of a 16 x 16 array of threads. If the image has DIM x DIM pixels, we need to launch
DIM/16 x DIM/16 blocks to get one thread per pixel. Figure 5.2 shows how this
block and thread configuration would look in a (ridiculously) small, 48-pixel-wide,
32-pixel-high image.

Block (0,0)

Block (0,1)

Block (1,0)

Block (1,1)

Thread
(0.0)

Thread
(0,1)

Thread
(0,15)

Thread
(1,0)

Thread
(1,1)

Thread
(1,15)

Thread
(2,0)

Thread
(2,1)

Thread
(2,15)

Thread
(15,0)

Thread
(15,1)

Thread
(15,15)

Block (2,0)

Block (2,1)

Figure 5.2 A 2D hierarchy of blocks and threads that could be used to process a
48 x 32 pixel image using one thread per pixel

THREAD COOPERATION

72

If you have done any multithreaded CPU programming, you may be wondering
why we would launch so many threads. For example, to render a full high-
 definition animation at 1920 x 1080, this method would create more than 2 million
threads. Although we routinely create and schedule this many threads on a GPU,
one would not dream of creating this many threads on a CPU. Because CPU
thread management and scheduling must be done in software, it simply cannot
scale to the number of threads that a GPU can. Because we can simply create a
thread for each data element we want to process, parallel programming on a GPU
can be far simpler than on a CPU.

After declaring the variables that hold the dimensions of our launch, we simply
launch the kernel that will compute our pixel values.

 kernel<<< blocks,threads>>>(d->dev _ bitmap, ticks);

The kernel will need two pieces of information that we pass as parameters. First,
it needs a pointer to device memory that holds the output pixels. This is a global
variable that had its memory allocated in main(). But the variable is “global”
only for host code, so we need to pass it as a parameter to ensure that the CUDA
runtime will make it available for our device code.

Second, our kernel will need to know the current animation time so it can
generate the correct frame. The current time, ticks, is passed to the
generate_frame() function from the infrastructure code in CPUAnimBitmap,
so we can simply pass this on to our kernel.

And now, here’s the kernel code itself:

__global__ void kernel(unsigned char *ptr, int ticks) {

 // map from threadIdx/BlockIdx to pixel position

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 int offset = x + y * blockDim.x * gridDim.x;

 // now calculate the value at that position

 float fx = x - DIM/2;

 float fy = y - DIM/2;

 float d = sqrtf(fx * fx + fy * fy);

SPLITTING PARALLEL BLOCKS

73

5.2 SPLITTING PARALLEL BLOCKS

 unsigned char grey = (unsigned char)(128.0f + 127.0f *

 cos(d/10.0f - ticks/7.0f) /

 (d/10.0f + 1.0f));

 ptr[offset*4 + 0] = grey;

 ptr[offset*4 + 1] = grey;

 ptr[offset*4 + 2] = grey;

 ptr[offset*4 + 3] = 255;

}

The first three are the most important lines in the kernel.

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 int offset = x + y * blockDim.x * gridDim.x;

In these lines, each thread takes its index within its block as well as the index
of its block within the grid, and it translates this into a unique (x,y) index
within the image. So when the thread at index (3, 5) in block (12, 8) begins
executing, it knows that there are 12 entire blocks to the left of it and 8 entire
blocks above it. Within its block, the thread at (3, 5) has three threads to the
left and five above it. Because there are 16 threads per block, this means the
thread in question has the following:

3 threads + 12 blocks * 16 threads/block = 195 threads to the left of it

5 threads + 8 blocks * 16 threads/block = 128 threads above it

This computation is identical to the computation of x and y in the first two lines
and is how we map the thread and block indices to image coordinates. Then we
simply linearize these x and y values to get an offset into the output buffer. Again,
this is identical to what we did in the “GPU Sums of a Longer Vector” and “GPU
Sums of Arbitrarily Long Vectors” sections.

 int offset = x + y * blockDim.x * gridDim.x;

Since we know which (x,y) pixel in the image the thread should compute and
we know the time at which it needs to compute this value, we can compute any

THREAD COOPERATION

74

function of (x,y,t) and store this value in the output buffer. In this case, the
function produces a time-varying sinusoidal “ripple.”

 float fx = x - DIM/2;

 float fy = y - DIM/2;

 float d = sqrtf(fx * fx + fy * fy);

 unsigned char grey = (unsigned char)(128.0f + 127.0f *

 cos(d/10.0f - ticks/7.0f) /

 (d/10.0f + 1.0f));

We recommend that you not get too hung up on the computation of grey. It’s
essentially just a 2D function of time that makes a nice rippling effect when it’s
animated. A screenshot of one frame should look something like Figure 5.3.

Figure 5.3 A screenshot from the GPU ripple example

SHARED MEMORY AND SYNCHRONIZATION

75

5.3 SHARED MEMORY AND SYNCHRONIZATION

Shared Memory and 5.3
Synchronization
So far, the motivation for splitting blocks into threads was simply one of working
around hardware limitations to the number of blocks we can have in flight. This
is fairly weak motivation, because this could easily be done behind the scenes by
the CUDA runtime. Fortunately, there are other reasons one might want to split a
block into threads.

CUDA C makes available a region of memory that we call shared memory. This
region of memory brings along with it another extension to the C language akin
to __device__ and __global__. As a programmer, you can modify your vari-
able declarations with the CUDA C keyword __shared__ to make this variable
resident in shared memory. But what’s the point?

We’re glad you asked. The CUDA C compiler treats variables in shared memory
differently than typical variables. It creates a copy of the variable for each block
that you launch on the GPU. Every thread in that block shares the memory, but
threads cannot see or modify the copy of this variable that is seen within other
blocks. This provides an excellent means by which threads within a block can
communicate and collaborate on computations. Furthermore, shared memory
buffers reside physically on the GPU as opposed to residing in off-chip DRAM.
Because of this, the latency to access shared memory tends to be far lower
than typical buffers, making shared memory effective as a per-block, software-
managed cache or scratchpad.

The prospect of communication between threads should excite you. It excites us,
too. But nothing in life is free, and interthread communication is no exception.
If we expect to communicate between threads, we also need a mechanism for
synchronizing between threads. For example, if thread A writes a value to shared
memory and we want thread B to do something with this value, we can’t have
thread B start its work until we know the write from thread A is complete. Without
synchronization, we have created a race condition where the correctness of the
execution results depends on the nondeterministic details of the hardware.

Let’s take a look at an example that uses these features.

THREAD COOPERATION

76

dot Product5.3.1

Congratulations! We have graduated from vector addition and will now take a look
at vector dot products (sometimes called an inner product). We will quickly review
what a dot product is, just in case you are unfamiliar with vector mathematics (or
it has been a few years). The computation consists of two steps. First, we multiply
corresponding elements of the two input vectors. This is very similar to vector
addition but utilizes multiplication instead of addition. However, instead of then
storing these values to a third, output vector, we sum them all to produce a single
scalar output.

For example, if we take the dot product of two four-element vectors, we would get
Equation 5.1.

Equation 5.1

Perhaps the algorithm we tend to use is becoming obvious. We can do the first
step exactly how we did vector addition. Each thread multiplies a pair of corre-
sponding entries, and then every thread moves on to its next pair. Because the
result needs to be the sum of all these pairwise products, each thread keeps
a running sum of the pairs it has added. Just like in the addition example, the
threads increment their indices by the total number of threads to ensure we don’t
miss any elements and don’t multiply a pair twice. Here is the first step of the dot
product routine:

#include "../common/book.h"

#define imin(a,b) (a<b?a:b)

const int N = 33 * 1024;

const int threadsPerBlock = 256;

__global__ void dot(float *a, float *b, float *c) {

 __shared__ float cache[threadsPerBlock];

 int tid = threadIdx.x + blockIdx.x * blockDim.x;

 int cacheIndex = threadIdx.x;

SHARED MEMORY AND SYNCHRONIZATION

77

5.3 SHARED MEMORY AND SYNCHRONIZATION

 float temp = 0;

 while (tid < N) {

 temp += a[tid] * b[tid];

 tid += blockDim.x * gridDim.x;

 }

 // set the cache values

 cache[cacheIndex] = temp;

As you can see, we have declared a buffer of shared memory named cache. This
buffer will be used to store each thread’s running sum. Soon we will see why we
do this, but for now we will simply examine the mechanics by which we accom-
plish it. It is trivial to declare a variable to reside in shared memory, and it is
identical to the means by which you declare a variable as static or volatile
in standard C:

 __shared__ float cache[threadsPerBlock];

We declare the array of size threadsPerBlock so each thread in the block
has a place to store its temporary result. Recall that when we have allocated
memory globally, we allocated enough for every thread that runs the kernel, or
 threadsPerBlock times the total number of blocks. But since the compiler
will create a copy of the shared variables for each block, we need to allocate only
enough memory such that each thread in the block has an entry.

After allocating the shared memory, we compute our data indices much like we
have in the past:

 int tid = threadIdx.x + blockIdx.x * blockDim.x;

 int cacheIndex = threadIdx.x;

The computation for the variable tid should look familiar by now; we are just
combining the block and thread indices to get a global offset into our input arrays.
The offset into our shared memory cache is simply our thread index. Again, we
don’t need to incorporate our block index into this offset because each block has
its own private copy of this shared memory.

THREAD COOPERATION

78

Finally, we clear our shared memory buffer so that later we will be able to blindly
sum the entire array without worrying whether a particular entry has valid data
stored there:

 // set the cache values

 cache[cacheIndex] = temp;

It will be possible that not every entry will be used if the size of the input vectors
is not a multiple of the number of threads per block. In this case, the last block
will have some threads that do nothing and therefore do not write values.

Each thread computes a running sum of the product of corresponding entries in a
and b. After reaching the end of the array, each thread stores its temporary sum
into the shared buffer.

 float temp = 0;

 while (tid < N) {

 temp += a[tid] * b[tid];

 tid += blockDim.x * gridDim.x;

 }

 // set the cache values

 cache[cacheIndex] = temp;

At this point in the algorithm, we need to sum all the temporary values we’ve
placed in the cache. To do this, we will need some of the threads to read the
values that have been stored there. However, as we mentioned, this is a poten-
tially dangerous operation. We need a method to guarantee that all of these
writes to the shared array cache[] complete before anyone tries to read from
this buffer. Fortunately, such a method exists:

 // synchronize threads in this block

 __syncthreads();

This call guarantees that every thread in the block has completed instructions
prior to the __syncthreads() before the hardware will execute the next

SHARED MEMORY AND SYNCHRONIZATION

79

5.3 SHARED MEMORY AND SYNCHRONIZATION

instruction on any thread. This is exactly what we need! We now know that when
the first thread executes the first instruction after our __syncthreads(),
every other thread in the block has also finished executing up to the
__syncthreads().

Now that we have guaranteed that our temporary cache has been filled, we
can sum the values in it. We call the general process of taking an input array
and performing some computations that produce a smaller array of results a
 reduction. Reductions arise often in parallel computing, which leads to the desire
to give them a name.

The naïve way to accomplish this reduction would be having one thread iterate
over the shared memory and calculate a running sum. This will take us time
proportional to the length of the array. However, since we have hundreds of
threads available to do our work, we can do this reduction in parallel and take
time that is proportional to the logarithm of the length of the array. At first, the
following code will look convoluted; we’ll break it down in a moment.

The general idea is that each thread will add two of the values in cache[] and
store the result back to cache[]. Since each thread combines two entries into
one, we complete this step with half as many entries as we started with. In the
next step, we do the same thing on the remaining half. We continue in this fashion
for log2(threadsPerBlock) steps until we have the sum of every entry in
cache[]. For our example, we’re using 256 threads per block, so it takes 8 itera-
tions of this process to reduce the 256 entries in cache[] to a single sum.

The code for this follows:

 // for reductions, threadsPerBlock must be a power of 2

 // because of the following code

 int i = blockDim.x/2;

 while (i != 0) {

 if (cacheIndex < i)

 cache[cacheIndex] += cache[cacheIndex + i];

 __syncthreads();

 i /= 2;

 }

THREAD COOPERATION

80

Figure 5.4 One step of a summation reduction

For the first step, we start with i as half the number of threadsPerBlock.
We only want the threads with indices less than this value to do any work, so we
conditionally add two entries of cache[] if the thread’s index is less than i. We
protect our addition within an if(cacheIndex < i) block. Each thread will
take the entry at its index in cache[], add it to the entry at its index offset by i,
and store this sum back to cache[].

Suppose there were eight entries in cache[] and, as a result, i had the value 4.
One step of the reduction would look like Figure 5.4.

After we have completed a step, we have the same restriction we did after
computing all the pairwise products. Before we can read the values we just stored
in cache[], we need to ensure that every thread that needs to write to cache[]
has already done so. The __syncthreads() after the assignment ensures this
condition is met.

After termination of this while() loop, each block has but a single number
remaining. This number is sitting in the first entry of cache[] and is the sum
of every pairwise product the threads in that block computed. We then store this
single value to global memory and end our kernel:

 if (cacheIndex == 0)

 c[blockIdx.x] = cache[0];

}

SHARED MEMORY AND SYNCHRONIZATION

81

5.3 SHARED MEMORY AND SYNCHRONIZATION

Why do we do this global store only for the thread with cacheIndex == 0? Well,
since there is only one number that needs writing to global memory, only a single
thread needs to perform this operation. Conceivably, every thread could perform
this write and the program would still work, but doing so would create an unnec-
essarily large amount of memory traffic to write a single value. For simplicity,
we chose the thread with index 0, though you could conceivably have chosen any
cacheIndex to write cache[0] to global memory. Finally, since each block
will write exactly one value to the global array c[], we can simply index it by
blockIdx.

We are left with an array c[], each entry of which contains the sum produced by
one of the parallel blocks. The last step of the dot product is to sum the entries
of c[]. Even though the dot product is not fully computed, we exit the kernel and
return control to the host at this point. But why do we return to the host before
the computation is complete?

Previously, we referred to an operation like a dot product as a reduction. Roughly
speaking, this is because we produce fewer output data elements than we input.
In the case of a dot product, we always produce exactly one output, regardless
of the size of our input. It turns out that a massively parallel machine like a GPU
tends to waste its resources when performing the last steps of a reduction, since
the size of the data set is so small at that point; it is hard to utilize 480 arithmetic
units to add 32 numbers!

For this reason, we return control to the host and let the CPU finish the final step
of the addition, summing the array c[]. In a larger application, the GPU would
now be free to start another dot product or work on another large computation.
However, in this example, we are done with the GPU.

In explaining this example, we broke with tradition and jumped right into the
actual kernel computation. We hope you will have no trouble understanding the
body of main() up to the kernel call, since it is overwhelmingly similar to what
we have shown before.

const int blocksPerGrid =

 imin(32, (N+threadsPerBlock-1) / threadsPerBlock);

int main(void) {

 float *a, *b, c, *partial_c;

 float *dev_a, *dev_b, *dev_partial_c;

THREAD COOPERATION

82

 // allocate memory on the CPU side

 a = new float[N];

 b = new float[N];

 partial_c = new float[blocksPerGrid];

 // allocate the memory on the GPU

 HANDLE_ERROR(cudaMalloc((void**)&dev_a,

 N*sizeof(float)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_b,

 N*sizeof(float)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_partial_c,

 blocksPerGrid*sizeof(float)));

 // fill in the host memory with data

 for (int i=0; i<N; i++) {

 a[i] = i;

 b[i] = i*2;

 }

 // copy the arrays 'a' and 'b' to the GPU

 HANDLE_ERROR(cudaMemcpy(dev_a, a, N*sizeof(float),

 cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMemcpy(dev_b, b, N*sizeof(float),

 cudaMemcpyHostToDevice));

 dot<<<blocksPerGrid,threadsPerBlock>>>(dev_a,

 dev_b,

 dev_partial_c);

To avoid you passing out from boredom, we will quickly summarize this code:

Allocate host and device memory for input and output arrays.1.

Fill input arrays 2. a[] and b[], and then copy these to the device using
cudaMemcpy().

Call our dot product kernel using some predetermined number of threads 3.
per block and blocks per grid.

SHARED MEMORY AND SYNCHRONIZATION

83

5.3 SHARED MEMORY AND SYNCHRONIZATION

Despite most of this being commonplace to you now, it is worth examining the
computation for the number of blocks we launch. We discussed how the dot
product is a reduction and how each block launched will compute a partial sum.
The length of this list of partial sums should be something manageably small
for the CPU yet large enough such that we have enough blocks in flight to keep
even the fastest GPUs busy. We have chosen 32 blocks, although this is a case
where you may notice better or worse performance for other choices, especially
depending on the relative speeds of your CPU and GPU.

But what if we are given a very short list and 32 blocks of 256 threads apiece
is too many? If we have N data elements, we need only N threads in order
to compute our dot product. So in this case, we need the smallest multiple
of threadsPerBlock that is greater than or equal to N. We have seen this
once before when we were adding vectors. In this case, we get the smallest
multiple of threadsPerBlock that is greater than or equal to N by computing
(N+(threadsPerBlock-1)) / threadsPerBlock. As you may be able
to tell, this is actually a fairly common trick in integer math, so it is worth
digesting this even if you spend most of your time working outside the
CUDA C realm.

Therefore, the number of blocks we launch should be either 32 or
(N+(threadsPerBlock-1)) / threadsPerBlock, whichever value is
smaller.

 const int blocksPerGrid =

 imin(32, (N+threadsPerBlock-1) / threadsPerBlock);

Now it should be clear how we arrive at the code in main(). After the kernel
finishes, we still have to sum the result. But like the way we copy our input to
the GPU before we launch a kernel, we need to copy our output back to the CPU
before we continue working with it. So after the kernel finishes, we copy back the
list of partial sums and complete the sum on the CPU.

 // copy the array 'c' back from the GPU to the CPU

 HANDLE_ERROR(cudaMemcpy(partial_c, dev_partial_c,

 blocksPerGrid*sizeof(float),

 cudaMemcpyDeviceToHost));

THREAD COOPERATION

84

 // finish up on the CPU side

 c = 0;

 for (int i=0; i<blocksPerGrid; i++) {

 c += partial_c[i];

 }

Finally, we check our results and clean up the memory we’ve allocated on both
the CPU and GPU. Checking the results is made easier because we’ve filled the
inputs with predictable data. If you recall, a[] is filled with the integers from 0 to
N-1 and b[] is just 2*a[].

 // fill in the host memory with data

 for (int i=0; i<N; i++) {

 a[i] = i;

 b[i] = i*2;

 }

Our dot product should be two times the sum of the squares of the integers
from 0 to N-1. For the reader who loves discrete mathematics (and what’s not to
love?!), it will be an amusing diversion to derive the closed-form solution for this
summation. For those with less patience or interest, we present the closed-form
here, as well as the rest of the body of main():

 #define sum_squares(x) (x*(x+1)*(2*x+1)/6)

 printf("Does GPU value %.6g = %.6g?\n", c,

 2 * sum_squares((float)(N - 1)));

 // free memory on the GPU side

 cudaFree(dev_a);

 cudaFree(dev_b);

 cudaFree(dev_partial_c);

 // free memory on the CPU side

 delete [] a;

 delete [] b;

 delete [] partial_c;

}

SHARED MEMORY AND SYNCHRONIZATION

85

5.3 SHARED MEMORY AND SYNCHRONIZATION

If you found all our explanatory interruptions bothersome, here is the entire
source listing, sans commentary:

#include "../common/book.h"

#define imin(a,b) (a<b?a:b)

const int N = 33 * 1024;

const int threadsPerBlock = 256;

const int blocksPerGrid =

 imin(32, (N+threadsPerBlock-1) / threadsPerBlock);

__global__ void dot(float *a, float *b, float *c) {

 __shared__ float cache[threadsPerBlock];

 int tid = threadIdx.x + blockIdx.x * blockDim.x;

 int cacheIndex = threadIdx.x;

 float temp = 0;

 while (tid < N) {

 temp += a[tid] * b[tid];

 tid += blockDim.x * gridDim.x;

 }

 // set the cache values

 cache[cacheIndex] = temp;

 // synchronize threads in this block

 __syncthreads();

 // for reductions, threadsPerBlock must be a power of 2

 // because of the following code

 int i = blockDim.x/2;

 while (i != 0) {

 if (cacheIndex < i)

 cache[cacheIndex] += cache[cacheIndex + i];

 __syncthreads();

 i /= 2;

 }

THREAD COOPERATION

86

 if (cacheIndex == 0)

 c[blockIdx.x] = cache[0];

}

int main(void) {

 float *a, *b, c, *partial_c;

 float *dev_a, *dev_b, *dev_partial_c;

 // allocate memory on the CPU side

 a = (float*)malloc(N*sizeof(float));

 b = (float*)malloc(N*sizeof(float));

 partial_c = (float*)malloc(blocksPerGrid*sizeof(float));

 // allocate the memory on the GPU

 HANDLE_ERROR(cudaMalloc((void**)&dev_a,

 N*sizeof(float)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_b,

 N*sizeof(float)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_partial_c,

 blocksPerGrid*sizeof(float)));

 // fill in the host memory with data

 for (int i=0; i<N; i++) {

 a[i] = i;

 b[i] = i*2;

 }

 // copy the arrays ‘a’ and ‘b’ to the GPU

 HANDLE_ERROR(cudaMemcpy(dev_a, a, N*sizeof(float),

 cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMemcpy(dev_b, b, N*sizeof(float),

 cudaMemcpyHostToDevice));

SHARED MEMORY AND SYNCHRONIZATION

87

5.3 SHARED MEMORY AND SYNCHRONIZATION

 dot<<<blocksPerGrid,threadsPerBlock>>>(dev_a, dev_b,

 dev_partial_c);

 // copy the array 'c' back from the GPU to the CPU

 HANDLE_ERROR(cudaMemcpy(partial_c, dev_partial_c,

 blocksPerGrid*sizeof(float),

 cudaMemcpyDeviceToHost));

 // finish up on the CPU side

 c = 0;

 for (int i=0; i<blocksPerGrid; i++) {

 c += partial_c[i];

 }

 #define sum_squares(x) (x*(x+1)*(2*x+1)/6)

 printf(“Does GPU value %.6g = %.6g?\n”, c,

 2 * sum_squares((float)(N - 1)));

 // free memory on the GPU side

 cudaFree(dev_a);

 cudaFree(dev_b);

 cudaFree(dev_partial_c);

 // free memory on the CPU side

 free(a);

 free(b);

 free(partial_c);

}

DOT PRODUCT OPTIMIZED (INCORRECTLY)5.3.1

We quickly glossed over the second __syncthreads() in the dot product
example. Now we will take a closer look at it as well as examining an attempt
to improve it. If you recall, we needed the second __syncthreads() because

THREAD COOPERATION

88

we update our shared memory variable cache[] and need these updates to be
visible to every thread on the next iteration through the loop.

 int i = blockDim.x/2;

 while (i != 0) {

 if (cacheIndex < i)

 cache[cacheIndex] += cache[cacheIndex + i];

 __syncthreads();

 i /= 2;

 }

Observe that we update our shared memory buffer cache[] only if cacheIndex
is less than i. Since cacheIndex is really just threadIdx.x, this means that
only some of the threads are updating entries in the shared memory cache. Since
we are using __syncthreads only to ensure that these updates have taken
place before proceeding, it stands to reason that we might see a speed improve-
ment only if we wait for the threads that are actually writing to shared memory.
We do this by moving the synchronization call inside the if() block:

 int i = blockDim.x/2;

 while (i != 0) {

 if (cacheIndex < i) {

 cache[cacheIndex] += cache[cacheIndex + i];

 __syncthreads();

 }

 i /= 2;

 }

Although this was a valiant effort at optimization, it will not actually work. In fact,
the situation is worse than that. This change to the kernel will actually cause the
GPU to stop responding, forcing you to kill your program. But what could have
gone so catastrophically wrong with such a seemingly innocuous change?

To answer this question, it helps to imagine every thread in the block marching
through the code one line at a time. At each instruction in the program, every
thread executes the same instruction, but each can operate on different data.
But what happens when the instruction that every thread is supposed to execute

SHARED MEMORY AND SYNCHRONIZATION

89

5.3 SHARED MEMORY AND SYNCHRONIZATION

is inside a conditional block like an if()? Obviously not every thread should
execute that instruction, right? For example, consider a kernel that contains the
following fragment of code that intends for odd-indexed threads to update the
value of some variable:

 int myVar = 0;

 if(threadIdx.x % 2)

 myVar = threadIdx.x;

In the previous example, when the threads arrive at the line in bold, only the
threads with odd indices will execute it since the threads with even indices do not
satisfy the condition if(threadIdx.x % 2). The even-numbered threads
simply do nothing while the odd threads execute this instruction. When some of
the threads need to execute an instruction while others don’t, this situation is
known as thread divergence. Under normal circumstances, divergent branches
simply result in some threads remaining idle, while the other threads actually
execute the instructions in the branch.

But in the case of __syncthreads(), the result is somewhat tragic. The
CUDA Architecture guarantees that no thread will advance to an instruction
beyond the __syncthreads() until every thread in the block has executed the
__syncthreads(). Unfortunately, if the __syncthreads() sits in a divergent
branch, some of the threads will never reach the __syncthreads(). Therefore,
because of the guarantee that no instruction after a __syncthreads() can be
executed before every thread has executed it, the hardware simply continues to
wait for these threads. And waits. And waits. Forever.

This is the situation in the dot product example when we move the
__syncthreads() call inside the if() block. Any thread with cacheIndex
greater than or equal to i will never execute the __syncthreads(). This effec-
tively hangs the processor because it results in the GPU waiting for something
that will never happen.

 if (cacheIndex < i) {

 cache[cacheIndex] += cache[cacheIndex + i];

 __syncthreads();

 }

THREAD COOPERATION

90

The moral of this story is that __syncthreads() is a powerful mechanism
for ensuring that your massively parallel application still computes the correct
results. But because of this potential for unintended consequences, we still need
to take care when using it.

SHARED MEMORY BITMAP5.3.2

We have looked at examples that use shared memory and employed
__syncthreads() to ensure that data is ready before we continue.
In the name of speed, you may be tempted to live dangerously and omit
the __syncthreads(). We will now look at a graphical example that requires
__syncthreads() for correctness. We will show you screenshots of the
intended output and of the output when run without __syncthreads(). It
won’t be pretty.

The body of main() is identical to the GPU Julia Set example, although this time
we launch multiple threads per block:

#include "cuda.h"

#include "../common/book.h"

#include "../common/cpu_bitmap.h"

#define DIM 1024

#define PI 3.1415926535897932f

int main(void) {

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *dev_bitmap;

 HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap,

 bitmap.image_size()));

 dim3 grids(DIM/16,DIM/16);

 dim3 threads(16,16);

 kernel<<<grids,threads>>>(dev_bitmap);

SHARED MEMORY AND SYNCHRONIZATION

91

5.3 SHARED MEMORY AND SYNCHRONIZATION

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(), dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

 bitmap.display_and_exit();

 cudaFree(dev_bitmap);

}

As with the Julia Set example, each thread will be computing a pixel value for a
single output location. The first thing that each thread does is compute its x and
y location in the output image. This computation is identical to the tid computa-
tion in the vector addition example, although we compute it in two dimensions
this time:

__global__ void kernel(unsigned char *ptr) {

 // map from threadIdx/blockIdx to pixel position

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 int offset = x + y * blockDim.x * gridDim.x;

Since we will be using a shared memory buffer to cache our computations, we
declare one such that each thread in our 16 x 16 block has an entry.

 __shared__ float shared[16][16];

Then, each thread computes a value to be stored into this buffer.

 // now calculate the value at that position

 const float period = 128.0f;

 shared[threadIdx.x][threadIdx.y] =

 255 * (sinf(x*2.0f*PI/ period) + 1.0f) *

 (sinf(y*2.0f*PI/ period) + 1.0f) / 4.0f;

THREAD COOPERATION

92

And lastly, we store these values back out to the pixel, reversing the order of x
and y:

 ptr[offset*4 + 0] = 0;

 ptr[offset*4 + 1] = shared[15-threadIdx.x][15-threadIdx.y];

 ptr[offset*4 + 2] = 0;

 ptr[offset*4 + 3] = 255;

}

Granted, these computations are somewhat arbitrary. We’ve simply come up with
something that will draw a grid of green spherical blobs. So after compiling and
running this kernel, we output an image like the one in Figure 5.5.

What happened here? As you may have guessed from the way we set up this
example, we’re missing an important synchronization point. When a thread
stores the computed value in shared[][] to the pixel, it is possible that the
thread responsible for writing that value to shared[][] has not finished
writing it yet. The only way to guarantee that this does not happen is by using
__syncthreads(). Thus, the result is a corrupted picture of green blobs.

Figure 5.5 A screenshot rendered without proper synchronization

SHARED MEMORY AND SYNCHRONIZATION

93

5.3 SHARED MEMORY AND SYNCHRONIZATION

Although this may not be the end of the world, your application might be
computing more important values.

Instead, we need to add a synchronization point between the write to shared
memory and the subsequent read from it.

 shared[threadIdx.x][threadIdx.y] =

 255 * (sinf(x*2.0f*PI/ period) + 1.0f) *

 (sinf(y*2.0f*PI/ period) + 1.0f) / 4.0f;

 __syncthreads();

 ptr[offset*4 + 0] = 0;

 ptr[offset*4 + 1] = shared[15-threadIdx.x][15-threadIdx.y];

 ptr[offset*4 + 2] = 0;

 ptr[offset*4 + 3] = 255;

}

With this __syncthreads() in place, we then get a far more predictable (and
aesthetically pleasing) result, as shown in Figure 5.6.

Figure 5.6 A screenshot after adding the correct synchronization

THREAD COOPERATION

94

Chapter Review5.4
We know how blocks can be subdivided into smaller parallel execution units
known as threads. We revisited the vector addition example of the previous
chapter to see how to perform addition of arbitrarily long vectors. We also showed
an example of reduction and how we use shared memory and synchronization to
accomplish this. In fact, this example showed how the GPU and CPU can collabo-
rate on computing results. Finally, we showed how perilous it can be to an appli-
cation when we neglect the need for synchronization.

You have learned most of the basics of CUDA C as well as some of the ways it
resembles standard C and a lot of the important ways it differs from standard
C. This would be an excellent time to consider some of the problems you have
encountered and which ones might lend themselves to parallel implementations
with CUDA C. As we progress, we will look at some of the other features we can
use to accomplish tasks on the GPU, as well as some of the more advanced API
features that CUDA provides to us.

95

Chapter 6

Constant Memory
and Events

We hope you have learned much about writing code that executes on the GPU.
You should know how to spawn parallel blocks to execute your kernels, and you
should know how to further split these blocks into parallel threads. You have also
seen ways to enable communication and synchronization between these threads.
But since the book is not over yet, you may have guessed that CUDA C has even
more features that might be useful to you.

This chapter will introduce you to a couple of these more advanced features.
Specifically, there exist ways in which you can exploit special regions of memory
on your GPU in order to accelerate your applications. In this chapter, we will
discuss one of these regions of memory: constant memory. In addition, because
we are looking at our first method for enhancing the performance of your CUDA C
applications, you will also learn how to measure the performance of your applica-
tions using CUDA events. From these measurements, you will be able to quantify
the gain (or loss!) from any enhancements you make.

constAnt memory And events

96

Chapter Objectives6.1
Through the course of this chapter, you will accomplish the following:

You will learn about using constant memory with CUDA C.•

You will learn about the performance characteristics of constant memory.•

You will learn how to use CUDA events to measure application performance.•

Constant Memory6.2
Previously, we discussed how modern GPUs are equipped with enormous
amounts of arithmetic processing power. In fact, the computational advantage
graphics processors have over CPUs helped precipitate the initial interest in using
graphics processors for general-purpose computing. With hundreds of arithmetic
units on the GPU, often the bottleneck is not the arithmetic throughput of the
chip but rather the memory bandwidth of the chip. There are so many ALUs on
graphics processors that sometimes we just can’t keep the input coming to them
fast enough to sustain such high rates of computation. So, it is worth investigating
means by which we can reduce the amount of memory traffic required for a given
problem.

We have seen CUDA C programs that have used both global and shared memory
so far. However, the language makes available another kind of memory known
as constant memory. As the name may indicate, we use constant memory for
data that will not change over the course of a kernel execution. NVIDIA hardware
provides 64KB of constant memory that it treats differently than it treats standard
global memory. In some situations, using constant memory rather than global
memory will reduce the required memory bandwidth.

rAy trAcInG IntroductIon6.2.1

We will look at one way of exploiting constant memory in the context of a simple
ray tracing application. First, we will give you some background in the major
concepts behind ray tracing. If you are already comfortable with the concepts
behind ray tracing, you can skip to the “Ray Tracing on the GPU” section.

constAnt memory

97

6.2 CONSTANT MEMORY

Simply put, ray tracing is one way of producing a two-dimensional image of a
scene consisting of three-dimensional objects. But isn’t this what GPUs were
originally designed for? How is this different from what OpenGL or DirectX
do when you play your favorite game? Well, GPUs do indeed solve this same
problem, but they use a technique known as rasterization. There are many excel-
lent books on rasterization, so we will not endeavor to explain the differences
here. It suffices to say that they are completely different methods that solve the
same problem.

So, how does ray tracing produce an image of a three-dimensional scene? The
idea is simple: We choose a spot in our scene to place an imaginary camera. This
simplified digital camera contains a light sensor, so to produce an image, we
need to determine what light would hit that sensor. Each pixel of the resulting
image should be the same color and intensity of the ray of light that hits that spot
sensor.

Since light incident at any point on the sensor can come from any place in our
scene, it turns out it’s easier to work backward. That is, rather than trying to
figure out what light ray hits the pixel in question, what if we imagine shooting a
ray from the pixel and into the scene? In this way, each pixel behaves something
like an eye that is “looking” into the scene. Figure 6.1 illustrates these rays being
cast out of each pixel and into the scene.

Image
Scene Object

View Ray

Figure 6.1 A simple ray tracing scheme

constAnt memory And events

98

We figure out what color is seen by each pixel by tracing a ray from the pixel in
question through the scene until it hits one of our objects. We then say that the
pixel would “see” this object and can assign its color based on the color of the
object it sees. Most of the computation required by ray tracing is in the computa-
tion of these intersections of the ray with the objects in the scene.

Moreover, in more complex ray tracing models, shiny objects in the scene can
reflect rays, and translucent objects can refract the rays of light. This creates
secondary rays, tertiary rays, and so on. In fact, this is one of the attractive
features of ray tracing; it is very simple to get a basic ray tracer working, but we
can build models of more complex phenomenon into the ray tracer in order to
produce more realistic images.

RAY TRACING ON THE GPU6.2.2

Since APIs such as OpenGL and DirectX are not designed to allow ray-traced
rendering, we will have to use CUDA C to implement our basic ray tracer. Our
ray tracer will be extraordinarily simple so that we can concentrate on the use
of constant memory, so if you were expecting code that could form the basis of
a full-blown production renderer, you will be disappointed. Our basic ray tracer
will only support scenes of spheres, and the camera is restricted to the z-axis,
facing the origin. Moreover, we will not support any lighting of the scene to avoid
the complications of secondary rays. Instead of computing lighting effects, we will
simply assign each sphere a color and then shade them with some precomputed
function if they are visible.

So, what will the ray tracer do? It will fire a ray from each pixel and keep track of
which rays hit which spheres. It will also track the depth of each of these hits. In
the case where a ray passes through multiple spheres, only the sphere closest
to the camera can be seen. In essence, our “ray tracer” is not doing much more
than hiding surfaces that cannot be seen by the camera.

We will model our spheres with a data structure that stores the sphere’s center
coordinate of (x, y, z), its radius, and its color of (r, b, g).

constAnt memory

99

6.2 CONSTANT MEMORY

#define INF 2e10f

struct Sphere {

 float r,b,g;

 float radius;

 float x,y,z;

 __device__ float hit(float ox, float oy, float *n) {

 float dx = ox - x;

 float dy = oy - y;

 if (dx*dx + dy*dy < radius*radius) {

 float dz = sqrtf(radius*radius - dx*dx - dy*dy);

 *n = dz / sqrtf(radius * radius);

 return dz + z;

 }

 return -INF;

 }

};

You will also notice that the structure has a method called hit(float ox,
float oy, float *n). Given a ray shot from the pixel at (ox, oy), this
method computes whether the ray intersects the sphere. If the ray does intersect
the sphere, the method computes the distance from the camera where the ray
hits the sphere. We need this information for the reason mentioned before: In the
event that the ray hits more than one sphere, only the closest sphere can actually
be seen.

Our main() routine follows roughly the same sequence as our previous image-
generating examples.

#include "cuda.h"

#include "../common/book.h"

#include "../common/cpu_bitmap.h"

#define rnd(x) (x * rand() / RAND_MAX)

#define SPHERES 20

Sphere *s;

constAnt memory And events

100

int main(void) {

 // capture the start time

 cudaEvent_t start, stop;

 HANDLE_ERROR(cudaEventCreate(&start));

 HANDLE_ERROR(cudaEventCreate(&stop));

 HANDLE_ERROR(cudaEventRecord(start, 0));

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *dev_bitmap;

 // allocate memory on the GPU for the output bitmap

 HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap,

 bitmap.image_size()));

 // allocate memory for the Sphere dataset

 HANDLE_ERROR(cudaMalloc((void**)&s,

 sizeof(Sphere) * SPHERES));

We allocate memory for our input data, which is an array of spheres that compose
our scene. Since we need this data on the GPU but are generating it with the CPU,
we have to do both a cudaMalloc() and a malloc()to allocate memory on
both the GPU and the CPU. We also allocate a bitmap image that we will fill with
output pixel data as we ray trace our spheres on the GPU.

After allocating memory for input and output, we randomly generate the center
coordinate, color, and radius for our spheres:

 // allocate temp memory, initialize it, copy to

 // memory on the GPU, and then free our temp memory

 Sphere *temp_s = (Sphere*)malloc(sizeof(Sphere) * SPHERES);

 for (int i=0; i<SPHERES; i++) {

 temp_s[i].r = rnd(1.0f);

 temp_s[i].g = rnd(1.0f);

 temp_s[i].b = rnd(1.0f);

 temp_s[i].x = rnd(1000.0f) - 500;

 temp_s[i].y = rnd(1000.0f) - 500;

 temp_s[i].z = rnd(1000.0f) - 500;

 temp_s[i].radius = rnd(100.0f) + 20;

 }

constAnt memory

101

6.2 CONSTANT MEMORY

The program currently generates a random array of 20 spheres, but this quantity
is specified in a #define and can be adjusted accordingly.

We copy this array of spheres to the GPU using cudaMemcpy()and then free the
temporary buffer.

 HANDLE_ERROR(cudaMemcpy(s, temp_s,

 sizeof(Sphere) * SPHERES,

 cudaMemcpyHostToDevice));

 free(temp_s);

Now that our input is on the GPU and we have allocated space for the output, we
are ready to launch our kernel.

 // generate a bitmap from our sphere data

 dim3 grids(DIM/16,DIM/16);

 dim3 threads(16,16);

 kernel<<<grids,threads>>>(dev_bitmap);

We will examine the kernel itself in a moment, but for now you should take it on
faith that it ray traces the scene and generates pixel data for the input scene of
spheres. Finally, we copy the output image back from the GPU and display it. It
should go without saying that we free all allocated memory that hasn’t already
been freed.

 // copy our bitmap back from the GPU for display

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(), dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

 bitmap.display_and_exit();

 // free our memory

 cudaFree(dev_bitmap);

 cudaFree(s);

}

constAnt memory And events

102

All of this should be commonplace to you now. So, how do we do the actual ray
tracing? Because we have settled on a very simple ray tracing model, our kernel
will be very easy to understand. Each thread is generating one pixel for our output
image, so we start in the usual manner by computing the x- and y-coordinates
for the thread as well as the linearized offset into our output buffer. We will
also shift our (x,y) image coordinates by DIM/2 so that the z-axis runs through
the center of the image.

__global__ void kernel(unsigned char *ptr) {

 // map from threadIdx/BlockIdx to pixel position

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 int offset = x + y * blockDim.x * gridDim.x;

 float ox = (x - DIM/2);

 float oy = (y - DIM/2);

Since each ray needs to check each sphere for intersection, we will now iterate
through the array of spheres, checking each for a hit.

 float r=0, g=0, b=0;

 float maxz = -INF;

 for(int i=0; i<SPHERES; i++) {

 float n;

 float t = s[i].hit(ox, oy, &n);

 if (t > maxz) {

 float fscale = n;

 r = s[i].r * fscale;

 g = s[i].g * fscale;

 b = s[i].b * fscale;

 }

 }

Clearly, the majority of the interesting computation lies in the for() loop. We
iterate through each of the input spheres and call its hit() method to deter-
mine whether the ray from our pixel “sees” the sphere. If the ray hits the current
sphere, we determine whether the hit is closer to the camera than the last sphere
we hit. If it is closer, we store this depth as our new closest sphere. In addition, we

constAnt memory

103

6.2 CONSTANT MEMORY

store the color associated with this sphere so that when the loop has terminated,
the thread knows the color of the sphere that is closest to the camera. Since this
is the color that the ray from our pixel “sees,” we conclude that this is the color of
the pixel and store this value in our output image buffer.

After every sphere has been checked for intersection, we can store the current
color into the output image.

 ptr[offset*4 + 0] = (int)(r * 255);

 ptr[offset*4 + 1] = (int)(g * 255);

 ptr[offset*4 + 2] = (int)(b * 255);

 ptr[offset*4 + 3] = 255;

}

Note that if no spheres have been hit, the color that we store will be whatever
color we initialized the variables r, b, and g to. In this case, we set r, b, and g
to zero so the background will be black. You can change these values to render
a different color background. Figure 6.2 shows an example of what the output
should look like when rendered with 20 spheres and a black background.

Figure 6.2 A screenshot from the ray tracing example

constAnt memory And events

104

Since we randomly generated the sphere positions, colors, and sizes, we advise
you not to panic if your output doesn’t match this image identically.

RAY TRACING WITH CONSTANT MEMORY6.2.3

You may have noticed that we never mentioned constant memory in the ray
tracing example. Now it’s time to improve this example using the benefits of
constant memory. Since we cannot modify constant memory, we clearly can’t
use it for the output image data. And this example has only one input, the array
of spheres, so it should be pretty obvious what data we will store in constant
memory.

The mechanism for declaring memory constant is identical to the one we used for
declaring a buffer as shared memory. Instead of declaring our array like this:

 Sphere *s;

we add the modifier __constant__ before it:

 __constant__ Sphere s[SPHERES];

Notice that in the original example, we declared a pointer and then used
 cudaMalloc() to allocate GPU memory for it. When we changed it to constant
memory, we also changed the declaration to statically allocate the space in
constant memory. We no longer need to worry about calling cudaMalloc() or
cudaFree() for our array of spheres, but we do need to commit to a size for this
array at compile-time. For many applications, this is an acceptable trade-off for
the performance benefits of constant memory. We will talk about these benefits
momentarily, but first we will look at how the use of constant memory changes
our main() routine:

int main(void) {

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *dev_bitmap;

 // allocate memory on the GPU for the output bitmap

 HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap,

 bitmap.image_size()));

constAnt memory

105

6.2 CONSTANT MEMORY

 // allocate temp memory, initialize it, copy to constant

 // memory on the GPU, and then free our temp memory

 Sphere *temp_s = (Sphere*)malloc(sizeof(Sphere) * SPHERES);

 for (int i=0; i<SPHERES; i++) {

 temp_s[i].r = rnd(1.0f);

 temp_s[i].g = rnd(1.0f);

 temp_s[i].b = rnd(1.0f);

 temp_s[i].x = rnd(1000.0f) - 500;

 temp_s[i].y = rnd(1000.0f) - 500;

 temp_s[i].z = rnd(1000.0f) - 500;

 temp_s[i].radius = rnd(100.0f) + 20;

 }

 HANDLE_ERROR(cudaMemcpyToSymbol(s, temp_s,

 sizeof(Sphere) * SPHERES));

 free(temp_s);

 // generate a bitmap from our sphere data

 dim3 grids(DIM/16,DIM/16);

 dim3 threads(16,16);

 kernel<<<grids,threads>>>(dev_bitmap);

 // copy our bitmap back from the GPU for display

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(), dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

 bitmap.display_and_exit();

 // free our memory

 cudaFree(dev_bitmap);

}

Largely, this is identical to the previous implementation of main(). As we
mentioned previously, we no longer need the call to cudaMalloc() to allocate

constAnt memory And events

106

space for our array of spheres. The other change has been highlighted in the
listing:

 HANDLE_ERROR(cudaMemcpyToSymbol(s, temp_s,

 sizeof(Sphere) * SPHERES));

We use this special version of cudaMemcpy() when we copy from host
memory to constant memory on the GPU. The only differences between
 cudaMemcpyToSymbol() and cudaMemcpy() using cudaMemcpyHostToDevice
are that cudaMemcpyToSymbol() copies to constant memory and
cudaMemcpy() copies to global memory.

Outside the __constant__ modifier and the two changes to main(), the
versions with and without constant memory are identical.

PERFORMANCE WITH CONSTANT MEMORY6.2.4

Declaring memory as __constant__ constrains our usage to be read-only. In
taking on this constraint, we expect to get something in return. As we previously
mentioned, reading from constant memory can conserve memory bandwidth
when compared to reading the same data from global memory. There are two
reasons why reading from the 64KB of constant memory can save bandwidth over
standard reads of global memory:

A single read from constant memory can be broadcast to other “nearby” •
threads, effectively saving up to 15 reads.

Constant memory is cached, so consecutive reads of the same address will not •
incur any additional memory traffic.

What do we mean by the word nearby? To answer this question, we will need to
explain the concept of a warp. For those readers who are more familiar with Star
Trek than with weaving, a warp in this context has nothing to do with the speed
of travel through space. In the world of weaving, a warp refers to the group
of threads being woven together into fabric. In the CUDA Architecture, a warp
refers to a collection of 32 threads that are “woven together” and get executed in
lockstep. At every line in your program, each thread in a warp executes the same
instruction on different data.

constAnt memory

107

6.2 CONSTANT MEMORY

When it comes to handling constant memory, NVIDIA hardware can broadcast
a single memory read to each half-warp. A half-warp—not nearly as creatively
named as a warp—is a group of 16 threads: half of a 32-thread warp. If every
thread in a half-warp requests data from the same address in constant memory,
your GPU will generate only a single read request and subsequently broadcast
the data to every thread. If you are reading a lot of data from constant memory,
you will generate only 1/16 (roughly 6 percent) of the memory traffic as you would
when using global memory.

But the savings don’t stop at a 94 percent reduction in bandwidth when
reading constant memory! Because we have committed to leaving the memory
unchanged, the hardware can aggressively cache the constant data on the GPU.
So after the first read from an address in constant memory, other half-warps
requesting the same address, and therefore hitting the constant cache, will
generate no additional memory traffic.

In the case of our ray tracer, every thread in the launch reads the data corre-
sponding to the first sphere so the thread can test its ray for intersection. After
we modify our application to store the spheres in constant memory, the hard-
ware needs to make only a single request for this data. After caching the data,
every other thread avoids generating memory traffic as a result of one of the two
constant memory benefits:

It receives the data in a half-warp broadcast.•

It retrieves the data from the constant memory cache.•

Unfortunately, there can potentially be a downside to performance when using
constant memory. The half-warp broadcast feature is in actuality a double-edged
sword. Although it can dramatically accelerate performance when all 16 threads
are reading the same address, it actually slows performance to a crawl when all
16 threads read different addresses.

The trade-off to allowing the broadcast of a single read to 16 threads is that the
16 threads are allowed to place only a single read request at a time. For example,
if all 16 threads in a half-warp need different data from constant memory, the
16 different reads get serialized, effectively taking 16 times the amount of time
to place the request. If they were reading from conventional global memory, the
request could be issued at the same time. In this case, reading from constant
memory would probably be slower than using global memory.

constAnt memory And events

108

Measuring Performance with Events6.3
Fully aware that there may be either positive or negative implications, you have
changed your ray tracer to use constant memory. How do you determine how this
has impacted the performance of your program? One of the simplest metrics
involves answering this simple question: Which version takes less time to finish?
We could use one of the CPU or operating system timers, but this will include
latency and variation from any number of sources (operating system thread
scheduling, availability of high-precision CPU timers, and so on). Furthermore,
while the GPU kernel runs, we may be asynchronously performing computation
on the host. The only way to time these host computations is using the CPU or
operating system timing mechanism. So to measure the time a GPU spends on a
task, we will use the CUDA event API.

An event in CUDA is essentially a GPU time stamp that is recorded at a user-
 specified point in time. Since the GPU itself is recording the time stamp, it
eliminates a lot of the problems we might encounter when trying to time GPU
execution with CPU timers. The API is relatively easy to use, since taking a time
stamp consists of just two steps: creating an event and subsequently recording
an event. For example, at the beginning of some sequence of code, we instruct
the CUDA runtime to make a record of the current time. We do so by creating and
then recording the event:

cudaEvent_t start;

cudaEventCreate(&start);

cudaEventRecord(start, 0);

You will notice that when we instruct the runtime to record the event start, we
also pass it a second argument. In the previous example, this argument is 0. The
exact nature of this argument is unimportant for our purposes right now, so we
intend to leave it mysteriously unexplained rather than open a new can of worms.
If your curiosity is killing you, we intend to discuss this when we talk about
streams.

To time a block of code, we will want to create both a start event and a stop event.
We will have the CUDA runtime record when we start tell it to do some other work
on the GPU and then tell it to record when we’ve stopped:

MEASURING PERFORMANCE WITH EVENTS

109

6.3 MEASURING PERFORMANCE WITH EVENTS

cudaEvent_t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start, 0);

// do some work on the GPU

cudaEventRecord(stop, 0);

Unfortunately, there is still a problem with timing GPU code in this way. The fix will
require only one line of code but will require some explanation. The trickiest part of
using events arises as a consequence of the fact that some of the calls we make in
CUDA C are actually asynchronous. For example, when we launched the kernel in
our ray tracer, the GPU begins executing our code, but the CPU continues executing
the next line of our program before the GPU finishes. This is excellent from a
performance standpoint because it means we can be computing something on the
GPU and CPU at the same time, but conceptually it makes timing tricky.

You should imagine calls to cudaEventRecord() as an instruction to record
the current time being placed into the GPU’s pending queue of work. As a result,
our event won’t actually be recorded until the GPU finishes everything prior to the
call to cudaEventRecord(). In terms of having our stop event measure the
correct time, this is precisely what we want. But we cannot safely read the value
of the stop event until the GPU has completed its prior work and recorded the
stop event. Fortunately, we have a way to instruct the CPU to synchronize on an
event, the event API function cudaEventSynchronize():

cudaEvent_t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start, 0);

// do some work on the GPU

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

Now, we have instructed the runtime to block further instruction until the GPU
has reached the stop event. When the call to cudaEventSynchronize()

constAnt memory And events

110

returns, we know that all GPU work before the stop event has completed, so it
is safe to read the time stamp recorded in stop. It is worth noting that because
CUDA events get implemented directly on the GPU, they are unsuitable for timing
mixtures of device and host code. That is, you will get unreliable results if you
attempt to use CUDA events to time more than kernel executions and memory
copies involving the device.

MEASURING RAY TRACER PERFORMANCE6.3.1

To time our ray tracer, we will need to create a start and stop event, just as we did
when learning about events. The following is a timing-enabled version of the ray
tracer that does not use constant memory:

int main(void) {

 // capture the start time

 cudaEvent_t start, stop;

 HANDLE_ERROR(cudaEventCreate(&start));

 HANDLE_ERROR(cudaEventCreate(&stop));

 HANDLE_ERROR(cudaEventRecord(start, 0));

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *dev_bitmap;

 // allocate memory on the GPU for the output bitmap

 HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap,

 bitmap.image_size()));

 // allocate memory for the Sphere dataset

 HANDLE_ERROR(cudaMalloc((void**)&s,

 sizeof(Sphere) * SPHERES));

 // allocate temp memory, initialize it, copy to

 // memory on the GPU, and then free our temp memory

 Sphere *temp_s = (Sphere*)malloc(sizeof(Sphere) * SPHERES);

 for (int i=0; i<SPHERES; i++) {

 temp_s[i].r = rnd(1.0f);

 temp_s[i].g = rnd(1.0f);

 temp_s[i].b = rnd(1.0f);

 temp_s[i].x = rnd(1000.0f) - 500;

MEASURING PERFORMANCE WITH EVENTS

111

6.3 MEASURING PERFORMANCE WITH EVENTS

 temp_s[i].y = rnd(1000.0f) - 500;

 temp_s[i].z = rnd(1000.0f) - 500;

 temp_s[i].radius = rnd(100.0f) + 20;

 }

 HANDLE_ERROR(cudaMemcpy(s, temp_s,

 sizeof(Sphere) * SPHERES,

 cudaMemcpyHostToDevice));

 free(temp_s);

 // generate a bitmap from our sphere data

 dim3 grids(DIM/16,DIM/16);

 dim3 threads(16,16);

 kernel<<<grids,threads>>>(s, dev_bitmap);

 // copy our bitmap back from the GPU for display

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(), dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

 // get stop time, and display the timing results

 HANDLE_ERROR(cudaEventRecord(stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(stop));

 float elapsedTime;

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 start, stop));

 printf("Time to generate: %3.1f ms\n", elapsedTime);

 HANDLE_ERROR(cudaEventDestroy(start));

 HANDLE_ERROR(cudaEventDestroy(stop));

 // display

 bitmap.display_and_exit();

 // free our memory

 cudaFree(dev_bitmap);

 cudaFree(s);

}

constAnt memory And events

112

Notice that we have thrown two additional functions into the mix, the calls
to cudaEventElapsedTime() and cudaEventDestroy(). The function
cudaEventElapsedTime() is a utility that computes the elapsed time between
two previously recorded events. The time in milliseconds elapsed between the
two events is returned in the first argument, the address of a floating-point
variable.

The call to cudaEventDestroy() needs to be made when we’re finished
using an event created with cudaEventCreate(). This is identical to calling
free() on memory previously allocated with malloc(), so we needn’t
stress how important it is to match every cudaEventCreate() with a
cudaEventDestroy().

We can instrument the ray tracer that does use constant memory in the same
fashion:

int main(void) {

 // capture the start time

 cudaEvent_t start, stop;

 HANDLE_ERROR(cudaEventCreate(&start));

 HANDLE_ERROR(cudaEventCreate(&stop));

 HANDLE_ERROR(cudaEventRecord(start, 0));

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *dev_bitmap;

 // allocate memory on the GPU for the output bitmap

 HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap,

 bitmap.image_size()));

 // allocate temp memory, initialize it, copy to constant

 // memory on the GPU, and then free our temp memory

 Sphere *temp_s = (Sphere*)malloc(sizeof(Sphere) * SPHERES);

 for (int i=0; i<SPHERES; i++) {

 temp_s[i].r = rnd(1.0f);

 temp_s[i].g = rnd(1.0f);

 temp_s[i].b = rnd(1.0f);

 temp_s[i].x = rnd(1000.0f) - 500;

MEASURING PERFORMANCE WITH EVENTS

113

6.3 MEASURING PERFORMANCE WITH EVENTS

 temp_s[i].y = rnd(1000.0f) - 500;

 temp_s[i].z = rnd(1000.0f) - 500;

 temp_s[i].radius = rnd(100.0f) + 20;

 }

 HANDLE_ERROR(cudaMemcpyToSymbol(s, temp_s,

 sizeof(Sphere) * SPHERES));

 free(temp_s);

 // generate a bitmap from our sphere data

 dim3 grids(DIM/16,DIM/16);

 dim3 threads(16,16);

 kernel<<<grids,threads>>>(dev_bitmap);

 // copy our bitmap back from the GPU for display

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(), dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

 // get stop time, and display the timing results

 HANDLE_ERROR(cudaEventRecord(stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(stop));

 float elapsedTime;

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 start, stop));

 printf("Time to generate: %3.1f ms\n", elapsedTime);

 HANDLE_ERROR(cudaEventDestroy(start));

 HANDLE_ERROR(cudaEventDestroy(stop));

 // display

 bitmap.display_and_exit();

 // free our memory

 cudaFree(dev_bitmap);

}

constAnt memory And events

114

Now when we run our two versions of the ray tracer, we can compare the time it
takes to complete the GPU work. This will tell us at a high level whether intro-
ducing constant memory has improved the performance of our application or
worsened it. Fortunately, in this case, performance is improved dramatically
by using constant memory. Our experiments on a GeForce GTX 280 show the
constant memory ray tracer performing up to 50 percent faster than the version
that uses global memory. On a different GPU, your mileage might vary, although
the ray tracer that uses constant memory should always be at least as fast as the
version without it.

Chapter Review6.4
In addition to the global and shared memory we explored in previous chapters,
NVIDIA hardware makes other types of memory available for our use. Constant
memory comes with additional constraints over standard global memory, but
in some cases, subjecting ourselves to these constraints can yield additional
performance. Specifically, we can see additional performance when threads in a
warp need access to the same read-only data. Using constant memory for data
with this access pattern can conserve bandwidth both because of the capacity to
broadcast reads across a half-warp and because of the presence of a constant
memory cache on chip. Memory bandwidth bottlenecks a wide class of algo-
rithms, so having mechanisms to ameliorate this situation can prove incredibly
useful.

We also learned how to use CUDA events to request the runtime to record time
stamps at specific points during GPU execution. We saw how to synchronize the
CPU with the GPU on one of these events and then how to compute the time
elapsed between two events. In doing so, we built up a method to compare the
running time between two different methods for ray tracing spheres, concluding
that, for the application at hand, using constant memory gained us a significant
amount of performance.

115

Chapter 7

texture Memory

When we looked at constant memory, we saw how exploiting special memory
spaces under the right circumstances can dramatically accelerate applications.
We also learned how to measure these performance gains in order to make
informed decisions about performance choices. In this chapter, we will learn
about how to allocate and use texture memory. Like constant memory, texture
memory is another variety of read-only memory that can improve performance
and reduce memory traffic when reads have certain access patterns. Although
texture memory was originally designed for traditional graphics applications, it
can also be used quite effectively in some GPU computing applications.

TEXTURE MEMORY

116

Chapter Objectives7.1
Through the course of this chapter, you will accomplish the following:

You will learn about the performance characteristics of texture memory.•

You will learn how to use one-dimensional texture memory with CUDA C.•

You will learn how to use two-dimensional texture memory with CUDA C.•

Texture Memory Overview7.2
If you read the introduction to this chapter, the secret is already out: There is
yet another type of read-only memory that is available for use in your programs
written in CUDA C. Readers familiar with the workings of graphics hardware will
not be surprised, but the GPU’s sophisticated texture memory may also be used
for general-purpose computing. Although NVIDIA designed the texture units for
the classical OpenGL and DirectX rendering pipelines, texture memory has some
properties that make it extremely useful for computing.

Like constant memory, texture memory is cached on chip, so in some situations it
will provide higher effective bandwidth by reducing memory requests to off-chip
DRAM. Specifically, texture caches are designed for graphics applications where
memory access patterns exhibit a great deal of spatial locality. In a computing
application, this roughly implies that a thread is likely to read from an address
“near” the address that nearby threads read, as shown in Figure 7.1.

Thread 0

Thread 1

Thread 2

Thread 3

Figure 7.1 A mapping of threads into a two-dimensional region of memory

SIMULATING HEAT TRANSFER

117

7.3 SIMULATING HEAT TRANSFER

Arithmetically, the four addresses shown are not consecutive, so they would
not be cached together in a typical CPU caching scheme. But since GPU texture
caches are designed to accelerate access patterns such as this one, you will see
an increase in performance in this case when using texture memory instead of
global memory. In fact, this sort of access pattern is not incredibly uncommon in
general-purpose computing, as we shall see.

Simulating Heat Transfer 7.3
Physical simulations can be among the most computationally challenging prob-
lems to solve. Fundamentally, there is often a trade-off between accuracy and
computational complexity. As a result, computer simulations have become more
and more important in recent years, thanks in large part to the increased accu-
racy possible as a consequence of the parallel computing revolution. Since many
physical simulations can be parallelized quite easily, we will look at a very simple
simulation model in this example.

SIMPLE HEATING MODEL7.3.1

To demonstrate a situation where you can effectively employ texture memory,
we will construct a simple two-dimensional heat transfer simulation. We start
by assuming that we have some rectangular room that we divide into a grid.
Inside the grid, we will randomly scatter a handful of “heaters” with various fixed
temperatures. Figure 7.2 shows an example of what this room might look like.

Figure 7.2 A room with “heaters” of various temperature

TEXTURE MEMORY

118

Figure 7.3 Heat dissipating from warm cells into cold cells

Given a rectangular grid and configuration of heaters, we are looking to simu-
late what happens to the temperature in every grid cell as time progresses. For
simplicity, cells with heaters in them always remain a constant temperature.
At every step in time, we will assume that heat “flows” between a cell and its
neighbors. If a cell’s neighbor is warmer than it is, the warmer neighbor will tend
to warm it up. Conversely, if a cell has a neighbor cooler than it is, it will cool off.
Qualitatively, Figure 7.3 represents this flow of heat.

In our heat transfer model, we will compute the new temperature in a grid cell
as a sum of the differences between its temperature and the temperatures of its
neighbor, or, essentially, an update equation as shown in Equation 7.1.

Equation 7.1

In the equation for updating a cell’s temperature, the constant k simply repre-
sents the rate at which heat flows through the simulation. A large value of k will
drive the system to a constant temperature quickly, while a small value will allow
the solution to retain large temperature gradients longer. Since we consider only
four neighbors (top, bottom, left, right) and k and TOLD remain constant in the
equation, this update becomes like the one shown in Equation 7.2.

Equation 7.2

Like with the ray tracing example in the previous chapter, this model is not
intended to be close to what might be used in industry (in fact, it is not really
even an approximation of something physically accurate). We have simplified
this model immensely in order to draw attention to the techniques at hand. With
this in mind, let’s take a look at how the update given by Equation 7.2 can be
computed on the GPU.

SIMULATING HEAT TRANSFER

119

7.3 SIMULATING HEAT TRANSFER

comPutInG temPerAture uPdAtes7.3.2

We will cover the specifics of each step in a moment, but at a high level, our
update process proceeds as follows:

Given some grid of input temperatures, copy the temperature of cells 1.
with heaters to this grid. This will overwrite any previously computed
temperatures in these cells, thereby enforcing our restriction that “heating
cells” remain at a constant temperature. This copy gets performed in
copy_const_kernel().

Given the input temperature grid, compute the output temperatures based on 2.
the update in Equation 7.2. This update gets performed in blend_kernel().

Swap the input and output buffers in preparation of the next time step. The 3.
output temperature grid computed in step 2 will become the input temperature
grid that we start with in step 1 when simulating the next time step.

Before beginning the simulation, we assume we have generated a grid of
constants. Most of the entries in this grid are zero, but some entries contain
nonzero temperatures that represent heaters at fixed temperatures. This buffer
of constants will not change over the course of the simulation and gets read at
each time step.

Because of the way we are modeling our heat transfer, we start with the output
grid from the previous time step. Then, according to step 1, we copy the tempera-
tures of the cells with heaters into this output grid, overwriting any previously
computed temperatures. We do this because we have assumed that the tempera-
ture of these heater cells remains constant. We perform this copy of the constant
grid onto the input grid with the following kernel:

__global__ void copy_const_kernel(float *iptr,

 const float *cptr) {

 // map from threadIdx/BlockIdx to pixel position

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 int offset = x + y * blockDim.x * gridDim.x;

 if (cptr[offset] != 0) iptr[offset] = cptr[offset];

}

TEXTURE MEMORY

120

The first three lines should look familiar. The first two lines convert a thread’s
threadIdx and blockIdx into an x- and a y-coordinate. The third line
computes a linear offset into our constant and input buffers. The highlighted
line performs the copy of the heater temperature in cptr[] to the input grid in
iptr[]. Notice that the copy is performed only if the cell in the constant grid is
nonzero. We do this to preserve any values that were computed in the previous
time step within cells that do not contain heaters. Cells with heaters will have
nonzero entries in cptr[] and will therefore have their temperatures preserved
from step to step thanks to this copy kernel.

Step 2 of the algorithm is the most computationally involved. To perform the
updates, we can have each thread take responsibility for a single cell in our
simulation. Each thread will read its cell’s temperature and the temperatures of
its neighboring cells, perform the previous update computation, and then update
its temperature with the new value. Much of this kernel resembles techniques
you’ve used before.

__global__ void blend_kernel(float *outSrc,

 const float *inSrc) {

 // map from threadIdx/BlockIdx to pixel position

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 int offset = x + y * blockDim.x * gridDim.x;

 int left = offset - 1;

 int right = offset + 1;

 if (x == 0) left++;

 if (x == DIM-1) right--;

 int top = offset - DIM;

 int bottom = offset + DIM;

 if (y == 0) top += DIM;

 if (y == DIM-1) bottom -= DIM;

 outSrc[offset] = inSrc[offset] + SPEED * (inSrc[top] +

 inSrc[bottom] + inSrc[left] + inSrc[right] -

 inSrc[offset]*4);

}

Simulating Heat tranSfer

121

7.3 Simulating Heat tranSfer

notice that we start exactly as we did for the examples that produced images as
their output. However, instead of computing the color of a pixel, the threads are
computing temperatures of simulation grid cells. nevertheless, they start by
converting their threadIdx and blockIdx into an x, y, and offset. You might
be able to recite these lines in your sleep by now (although for your sake, we hope
you aren’t actually reciting them in your sleep).

next, we determine the offsets of our left, right, top, and bottom neighbors so
that we can read the temperatures of those cells. We will need those values to
compute the updated temperature in the current cell. the only complication here
is that we need to adjust indices on the border so that cells around the edges
do not wrap around. finally, in the highlighted line, we perform the update from
equation 7.2, adding the old temperature and the scaled differences of that
temperature and the cell’s neighbors’ temperatures.

7.3.3 animating tHe Simulation

the remainder of the code primarily sets up the grid and then displays an
animated output of the heat map. We will walk through that code now:

#include "cuda.h"

#include "../common/book.h"

#include "../common/cpu_anim.h"

#define DIM 1024

#define PI 3.1415926535897932f

#define MAX_TEMP 1.0f

#define MIN_TEMP 0.0001f

#define SPEED 0.25f

// globals needed by the update routine

struct DataBlock {

 unsigned char *output_bitmap;

 float *dev_inSrc;

 float *dev_outSrc;

 float *dev_constSrc;

 CPUAnimBitmap *bitmap;

TEXTURE MEMORY

122

 cudaEvent_t start, stop;

 float totalTime;

 float frames;

};

void anim_gpu(DataBlock *d, int ticks) {

 HANDLE_ERROR(cudaEventRecord(d->start, 0));

 dim3 blocks(DIM/16,DIM/16);

 dim3 threads(16,16);

 CPUAnimBitmap *bitmap = d->bitmap;

 for (int i=0; i<90; i++) {

 copy_const_kernel<<<blocks,threads>>>(d->dev_inSrc,

 d->dev_constSrc);

 blend_kernel<<<blocks,threads>>>(d->dev_outSrc,

 d->dev_inSrc);

 swap(d->dev_inSrc, d->dev_outSrc);

 }

 float_to_color<<<blocks,threads>>>(d->output_bitmap,

 d->dev_inSrc);

 HANDLE_ERROR(cudaMemcpy(bitmap->get_ptr(),

 d->output_bitmap,

 bitmap->image_size(),

 cudaMemcpyDeviceToHost));

 HANDLE_ERROR(cudaEventRecord(d->stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(d->stop));

 float elapsedTime;

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 d->start, d->stop));

 d->totalTime += elapsedTime;

 ++d->frames;

 printf("Average Time per frame: %3.1f ms\n",

 d->totalTime/d->frames);

}

SIMULATING HEAT TRANSFER

123

7.3 SIMULATING HEAT TRANSFER

void anim_exit(DataBlock *d) {

 cudaFree(d->dev_inSrc);

 cudaFree(d->dev_outSrc);

 cudaFree(d->dev_constSrc);

 HANDLE_ERROR(cudaEventDestroy(d->start));

 HANDLE_ERROR(cudaEventDestroy(d->stop));

}

We have equipped the code with event-based timing as we did in previous chap-
ter’s ray tracing example. The timing code serves the same purpose as it did
previously. Since we will endeavor to accelerate the initial implementation, we
have put in place a mechanism by which we can measure performance and
convince ourselves that we have succeeded.

The function anim_gpu() gets called by the animation framework on every
frame. The arguments to this function are a pointer to a DataBlock and the
number of ticks of the animation that have elapsed. As with the animation
examples, we use blocks of 256 threads that we organize into a two-dimensional
grid of 16 x 16. Each iteration of the for() loop in anim_gpu() computes a
single time step of the simulation as described by the three-step algorithm
at the beginning of Section 7.2.2: Computing Temperature Updates. Since the
DataBlock contains the constant buffer of heaters as well as the output of the
last time step, it encapsulates the entire state of the animation, and consequently,
anim_gpu() does not actually need to use the value of ticks anywhere.

You will notice that we have chosen to do 90 time steps per frame. This number
is not magical but was determined somewhat experimentally as a reasonable
trade-off between having to download a bitmap image for every time step and
computing too many time steps per frame, resulting in a jerky animation. If you
were more concerned with getting the output of each simulation step than you
were with animating the results in real time, you could change this such that you
computed only a single step on each frame.

After computing the 90 time steps since the previous frame, anim_gpu()
is ready to copy a bitmap frame of the current animation back to the CPU.
Since the for() loop leaves the input and output swapped, we first swap

TEXTURE MEMORY

124

the input and output buffers so that the output actually contains the output
of the 90th time step. We convert the temperatures to colors using the
kernel float_to_color() and then copy the resultant image back to
the CPU with a cudaMemcpy() that specifies the direction of copy as
 cudaMemcpyDeviceToHost. Finally, to prepare for the next sequence of time
steps, we swap the output buffer back to the input buffer since it will serve as
input to the next time step.

int main(void) {

 DataBlock data;

 CPUAnimBitmap bitmap(DIM, DIM, &data);

 data.bitmap = &bitmap;

 data.totalTime = 0;

 data.frames = 0;

 HANDLE_ERROR(cudaEventCreate(&data.start));

 HANDLE_ERROR(cudaEventCreate(&data.stop));

 HANDLE_ERROR(cudaMalloc((void**)&data.output_bitmap,

 bitmap.image_size()));

 // assume float == 4 chars in size (i.e., rgba)

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_inSrc,

 bitmap.image_size()));

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_outSrc,

 bitmap.image_size()));

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_constSrc,

 bitmap.image_size()));

 float *temp = (float*)malloc(bitmap.image_size());

 for (int i=0; i<DIM*DIM; i++) {

 temp[i] = 0;

 int x = i % DIM;

 int y = i / DIM;

 if ((x>300) && (x<600) && (y>310) && (y<601))

 temp[i] = MAX_TEMP;

 }

Simulating Heat tranSfer

125

7.3 Simulating Heat tranSfer

 temp[DIM*100+100] = (MAX_TEMP + MIN_TEMP)/2;

 temp[DIM*700+100] = MIN_TEMP;

 temp[DIM*300+300] = MIN_TEMP;

 temp[DIM*200+700] = MIN_TEMP;

 for (int y=800; y<900; y++) {

 for (int x=400; x<500; x++) {

 temp[x+y*DIM] = MIN_TEMP;

 }

 }

 HANDLE_ERROR(cudaMemcpy(data.dev_constSrc, temp,

 bitmap.image_size(),

 cudaMemcpyHostToDevice));

 for (int y=800; y<DIM; y++) {

 for (int x=0; x<200; x++) {

 temp[x+y*DIM] = MAX_TEMP;

 }

 }

 HANDLE_ERROR(cudaMemcpy(data.dev_inSrc, temp,

 bitmap.image_size(),

 cudaMemcpyHostToDevice));

 free(temp);

 bitmap.anim_and_exit((void (*)(void*,int))anim_gpu,

 (void (*)(void*))anim_exit);

}

figure 7.4 shows an example of what the output might look like. You will notice in
the image some of the “heaters” that appear to be pixel-sized islands that disrupt
the continuity of the temperature distribution.

7.3.4 uSing texture memorY

there is a considerable amount of spatial locality in the memory access pattern
required to perform the temperature update in each step. as we explained
previously, this is exactly the type of access pattern that gPu texture memory is

TEXTURE MEMORY

126

designed to accelerate. Given that we want to use texture memory, we need to
learn the mechanics of doing so.

First, we will need to declare our inputs as texture references. We will use refer-
ences to floating-point textures, since our temperature data is floating-point.

// these exist on the GPU side

texture<float> texConstSrc;

texture<float> texIn;

texture<float> texOut;

The next major difference is that after allocating GPU memory for these
three buffers, we need to bind the references to the memory buffer using
 cudaBindTexture(). This basically tells the CUDA runtime two things:

We intend to use the specified buffer as a texture.•

We intend to use the specified texture reference as the texture’s “name.”•

Figure 7.4 A screenshot from the animated heat transfer simulation

SIMULATING HEAT TRANSFER

127

7.3 SIMULATING HEAT TRANSFER

After the three allocations in our heat transfer simulation, we bind the three
allocations to the texture references declared earlier (texConstSrc, texIn, and
texOut).

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_inSrc,

 imageSize));

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_outSrc,

 imageSize));

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_constSrc,

 imageSize));

 HANDLE_ERROR(cudaBindTexture(NULL, texConstSrc,

 data.dev_constSrc,

 imageSize));

 HANDLE_ERROR(cudaBindTexture(NULL, texIn,

 data.dev_inSrc,

 imageSize));

 HANDLE_ERROR(cudaBindTexture(NULL, texOut,

 data.dev_outSrc,

 imageSize));

At this point, our textures are completely set up, and we’re ready to launch our
kernel. However, when we’re reading from textures in the kernel, we need to use
special functions to instruct the GPU to route our requests through the texture unit
and not through standard global memory. As a result, we can no longer simply use
square brackets to read from buffers; we need to modify blend_kernel() to use
tex1Dfetch() when reading from memory.

Additionally, there is another difference between using global and texture
memory that requires us to make another change. Although it looks like a func-
tion, tex1Dfetch() is a compiler intrinsic. And since texture references must
be declared globally at file scope, we can no longer pass the input and output
buffers as parameters to blend_kernel() because the compiler needs to know
at compile time which textures tex1Dfetch() should be sampling. Rather
than passing pointers to input and output buffers as we previously did, we will
pass to blend_kernel() a boolean flag dstOut that indicates which buffer to

TEXTURE MEMORY

128

use as input and which to use as output. The changes to blend_kernel() are
highlighted here:

__global__ void blend_kernel(float *dst,

 bool dstOut) {

 // map from threadIdx/BlockIdx to pixel position

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 int offset = x + y * blockDim.x * gridDim.x;

 int left = offset - 1;

 int right = offset + 1;

 if (x == 0) left++;

 if (x == DIM-1) right--;

 int top = offset - DIM;

 int bottom = offset + DIM;

 if (y == 0) top += DIM;

 if (y == DIM-1) bottom -= DIM;

 float t, l, c, r, b;

 if (dstOut) {

 t = tex1Dfetch(texIn,top);

 l = tex1Dfetch(texIn,left);

 c = tex1Dfetch(texIn,offset);

 r = tex1Dfetch(texIn,right);

 b = tex1Dfetch(texIn,bottom);

 } else {

 t = tex1Dfetch(texOut,top);

 l = tex1Dfetch(texOut,left);

 c = tex1Dfetch(texOut,offset);

 r = tex1Dfetch(texOut,right);

 b = tex1Dfetch(texOut,bottom);

 }

 dst[offset] = c + SPEED * (t + b + r + l - 4 * c);

}

SIMULATING HEAT TRANSFER

129

7.3 SIMULATING HEAT TRANSFER

Since the copy_const_kernel() kernel reads from our buffer that holds the
heater positions and temperatures, we will need to make a similar modification
there in order to read through texture memory instead of global memory:

__global__ void copy_const_kernel(float *iptr) {

 // map from threadIdx/BlockIdx to pixel position

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 int offset = x + y * blockDim.x * gridDim.x;

 float c = tex1Dfetch(texConstSrc,offset);

 if (c != 0)

 iptr[offset] = c;

}

Since the signature of blend_kernel() changed to accept a flag that switches
the buffers between input and output, we need a corresponding change to
the anim_gpu() routine. Rather than swapping buffers, we set dstOut =
!dstOut to toggle the flag after each series of calls:

void anim_gpu(DataBlock *d, int ticks) {

 HANDLE_ERROR(cudaEventRecord(d->start, 0));

 dim3 blocks(DIM/16,DIM/16);

 dim3 threads(16,16);

 CPUAnimBitmap *bitmap = d->bitmap;

 // since tex is global and bound, we have to use a flag to

 // select which is in/out per iteration

 volatile bool dstOut = true;

 for (int i=0; i<90; i++) {

 float *in, *out;

 if (dstOut) {

 in = d->dev_inSrc;

 out = d->dev_outSrc;

TEXTURE MEMORY

130

 } else {

 out = d->dev_inSrc;

 in = d->dev_outSrc;

 }

 copy_const_kernel<<<blocks,threads>>>(in);

 blend_kernel<<<blocks,threads>>>(out, dstOut);

 dstOut = !dstOut;

 }

 float_to_color<<<blocks,threads>>>(d->output_bitmap,

 d->dev_inSrc);

 HANDLE_ERROR(cudaMemcpy(bitmap->get_ptr(),

 d->output_bitmap,

 bitmap->image_size(),

 cudaMemcpyDeviceToHost));

 HANDLE_ERROR(cudaEventRecord(d->stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(d->stop));

 float elapsedTime;

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 d->start, d->stop));

 d->totalTime += elapsedTime;

 ++d->frames;

 printf("Average Time per frame: %3.1f ms\n",

 d->totalTime/d->frames);

}

The final change to our heat transfer routine involves cleaning up at the end of
the application’s run. Rather than just freeing the global buffers, we also need to
unbind textures:

Simulating Heat tranSfer

131

7.3 Simulating Heat tranSfer

// clean up memory allocated on the GPU

void anim_exit(DataBlock *d) {

 cudaUnbindTexture(texIn);

 cudaUnbindTexture(texOut);

 cudaUnbindTexture(texConstSrc);

 cudaFree(d->dev_inSrc);

 cudaFree(d->dev_outSrc);

 cudaFree(d->dev_constSrc);

 HANDLE_ERROR(cudaEventDestroy(d->start));

 HANDLE_ERROR(cudaEventDestroy(d->stop));

}

7.3.5 uSing two-DimenSional texture memory

toward the beginning of this book, we mentioned how some problems have two-
dimensional domains, and therefore it can be convenient to use two-dimensional
blocks and grids at times. the same is true for texture memory. there are many
cases when having a two-dimensional memory region can be useful, a claim that
should come as no surprise to anyone familiar with multidimensional arrays in
standard C. let’s look at how we can modify our heat transfer application to use
two-dimensional textures.

first, our texture reference declarations change. if unspecified, texture refer-
ences are one-dimensional by default, so we add a dimensionality argument of 2
in order to declare two-dimensional textures.

texture<float,2> texConstSrc;

texture<float,2> texIn;

texture<float,2> texOut;

the simplification promised by converting to two-dimensional textures comes in
the blend_kernel() method. although we need to change our tex1Dfetch()

TEXTURE MEMORY

132

calls to tex2D() calls, we no longer need to use the linearized offset variable
to compute the set of offsets top, left, right, and bottom. When we switch to
a two-dimensional texture, we can use x and y directly to address the texture.

Furthermore, we no longer have to worry about bounds overflow when we switch
to using tex2D(). If one of x or y is less than zero, tex2D() will return the
value at zero. Likewise, if one of these values is greater than the width, tex2D()
will return the value at width 1. Note that in our application, this behavior is ideal,
but it’s possible that other applications would desire other behavior.

As a result of these simplifications, our kernel cleans up nicely.

__global__ void blend_kernel(float *dst,

 bool dstOut) {

 // map from threadIdx/BlockIdx to pixel position

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 int offset = x + y * blockDim.x * gridDim.x;

 float t, l, c, r, b;

 if (dstOut) {

 t = tex2D(texIn,x,y-1);

 l = tex2D(texIn,x-1,y);

 c = tex2D(texIn,x,y);

 r = tex2D(texIn,x+1,y);

 b = tex2D(texIn,x,y+1);

 } else {

 t = tex2D(texOut,x,y-1);

 l = tex2D(texOut,x-1,y);

 c = tex2D(texOut,x,y);

 r = tex2D(texOut,x+1,y);

 b = tex2D(texOut,x,y+1);

 }

 dst[offset] = c + SPEED * (t + b + r + l - 4 * c);

}

SIMULATING HEAT TRANSFER

133

7.3 SIMULATING HEAT TRANSFER

Since all of our previous calls to tex1Dfetch() need to be changed to tex2D()
calls, we make the corresponding change in copy_const_kernel(). Similarly
to the kernel blend_kernel(), we no longer need to use offset to address
the texture; we simply use x and y to address the constant source:

__global__ void copy_const_kernel(float *iptr) {

 // map from threadIdx/BlockIdx to pixel position

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 int offset = x + y * blockDim.x * gridDim.x;

 float c = tex2D(texConstSrc,x,y);

 if (c != 0)

 iptr[offset] = c;

}

The final change to the one-dimensional texture version of our heat transfer
simulation is along the same lines as our previous changes. Specifically, in
main(), we need to change our texture binding calls to instruct the runtime that
the buffer we plan to use will be treated as a two-dimensional texture, not a one-
dimensional one:

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_inSrc,

 imageSize));

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_outSrc,

 imageSize));

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_constSrc,

 imageSize));

 cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>();

 HANDLE_ERROR(cudaBindTexture2D(NULL, texConstSrc,

 data.dev_constSrc,

 desc, DIM, DIM,

 sizeof(float) * DIM));

TEXTURE MEMORY

134

 HANDLE_ERROR(cudaBindTexture2D(NULL, texIn,

 data.dev_inSrc,

 desc, DIM, DIM,

 sizeof(float) * DIM));

 HANDLE_ERROR(cudaBindTexture2D(NULL, texOut,

 data.dev_outSrc,

 desc, DIM, DIM,

 sizeof(float) * DIM));

As with the nontexture and one-dimensional texture versions, we begin
by allocating storage for our input arrays. We deviate from the one-
dimensional example because the CUDA runtime requires that we provide a
 cudaChannelFormatDesc when we bind two-dimensional textures. The
previous listing includes a declaration of a channel format descriptor. In our
case, we can accept the default parameters and simply need to specify that
we require a floating-point descriptor. We then bind the three input buffers as
two-dimensional textures using cudaBindTexture2D(), the dimensions of
the texture (DIM x DIM), and the channel format descriptor (desc). The rest of
main() remains the same.

int main(void) {

 DataBlock data;

 CPUAnimBitmap bitmap(DIM, DIM, &data);

 data.bitmap = &bitmap;

 data.totalTime = 0;

 data.frames = 0;

 HANDLE_ERROR(cudaEventCreate(&data.start));

 HANDLE_ERROR(cudaEventCreate(&data.stop));

 int imageSize = bitmap.image_size();

 HANDLE_ERROR(cudaMalloc((void**)&data.output_bitmap,

 imageSize));

SIMULATING HEAT TRANSFER

135

7.3 SIMULATING HEAT TRANSFER

 // assume float == 4 chars in size (i.e., rgba)

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_inSrc,

 imageSize));

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_outSrc,

 imageSize));

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_constSrc,

 imageSize));

 cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>();

 HANDLE_ERROR(cudaBindTexture2D(NULL, texConstSrc,

 data.dev_constSrc,

 desc, DIM, DIM,

 sizeof(float) * DIM));

 HANDLE_ERROR(cudaBindTexture2D(NULL, texIn,

 data.dev_inSrc,

 desc, DIM, DIM,

 sizeof(float) * DIM));

 HANDLE_ERROR(cudaBindTexture2D(NULL, texOut,

 data.dev_outSrc,

 desc, DIM, DIM,

 sizeof(float) * DIM));

 // initialize the constant data

 float *temp = (float*)malloc(imageSize);

 for (int i=0; i<DIM*DIM; i++) {

 temp[i] = 0;

 int x = i % DIM;

 int y = i / DIM;

 if ((x>300) && (x<600) && (y>310) && (y<601))

 temp[i] = MAX_TEMP;

 }

TEXTURE MEMORY

136

 temp[DIM*100+100] = (MAX_TEMP + MIN_TEMP)/2;

 temp[DIM*700+100] = MIN_TEMP;

 temp[DIM*300+300] = MIN_TEMP;

 temp[DIM*200+700] = MIN_TEMP;

 for (int y=800; y<900; y++) {

 for (int x=400; x<500; x++) {

 temp[x+y*DIM] = MIN_TEMP;

 }

 }

 HANDLE_ERROR(cudaMemcpy(data.dev_constSrc, temp,

 imageSize,

 cudaMemcpyHostToDevice));

 // initialize the input data

 for (int y=800; y<DIM; y++) {

 for (int x=0; x<200; x++) {

 temp[x+y*DIM] = MAX_TEMP;

 }

 }

 HANDLE_ERROR(cudaMemcpy(data.dev_inSrc, temp,

 imageSize,

 cudaMemcpyHostToDevice));

 free(temp);

 bitmap.anim_and_exit((void (*)(void*,int))anim_gpu,

 (void (*)(void*))anim_exit);

}

Although we needed different functions to instruct the runtime to bind one-
dimensional or two-dimensional textures, we use the same routine to unbind
the texture, cudaUnbindTexture(). Because of this, our cleanup routine can
remain unchanged.

// clean up memory allocated on the GPU

void anim_exit(DataBlock *d) {

 cudaUnbindTexture(texIn);

 cudaUnbindTexture(texOut);

CHAPTER REVIEW

137

7.4 CHAPTER REVIEW

 cudaUnbindTexture(texConstSrc);

 cudaFree(d->dev_inSrc);

 cudaFree(d->dev_outSrc);

 cudaFree(d->dev_constSrc);

 HANDLE_ERROR(cudaEventDestroy(d->start));

 HANDLE_ERROR(cudaEventDestroy(d->stop));

}

The version of our heat transfer simulation that uses two-dimensional textures
has essentially identical performance characteristics as the version that uses
one-dimensional textures. So from a performance standpoint, the decision
between one- and two-dimensional textures is likely to be inconsequential. For
our particular application, the code is a little simpler when using two- dimensional
textures because we happen to be simulating a two-dimensional domain. But
in general, since this is not always the case, we suggest you make the decision
between one- and two-dimensional textures on a case-by-case basis.

Chapter Review7.4
As we saw in the previous chapter with constant memory, some of the benefit of
texture memory comes as the result of on-chip caching. This is especially notice-
able in applications such as our heat transfer simulation: applications that have
some spatial coherence to their data access patterns. We saw how either one- or
two-dimensional textures can be used, both having similar performance char-
acteristics. As with a block or grid shape, the choice of one- or two-dimensional
texture is largely one of convenience. Since the code became somewhat cleaner
when we switched to two-dimensional textures and the borders are handled auto-
matically, we would probably advocate the use of a 2D texture in our heat transfer
application. But as you saw, it will work fine either way.

Texture memory can provide additional speedups if we utilize some of the conver-
sions that texture samplers can perform automatically, such as unpacking packed
data into separate variables or converting 8- and 16-bit integers to normalized
floating-point numbers. We didn’t explore either of these capabilities in the heat
transfer application, but they might be useful to you!

This page intentionally left blank

139

Chapter 8

Graphics
 Interoperability

Since this book has focused on general-purpose computation, for the most part
we’ve ignored that GPUs contain some special-purpose components as well. The
GPU owes its success to its ability to perform complex rendering tasks in real
time, freeing the rest of the system to concentrate on other work. This leads us
to the obvious question: Can we use the GPU for both rendering and general-
purpose computation in the same application? What if the images we want to
render rely on the results of our computations? Or what if we want to take the
frame we’ve rendered and perform some image-processing or statistics compu-
tations on it?

Fortunately, not only is this interaction between general-purpose computation
and rendering modes possible, but it’s fairly easy to accomplish given what you
already know. CUDA C applications can seamlessly interoperate with either of the
two most popular real-time rendering APIs, OpenGL and DirectX. This chapter
will look at the mechanics by which you can enable this functionality.

The examples in this chapter deviate some from the precedents we’ve set in
previous chapters. In particular, this chapter assumes a significant amount about
your background with other technologies. Specifically, we have included a consid-
erable amount of OpenGL and GLUT code in these examples, almost none of
which will we explain in great depth. There are many superb resources to learn
graphics APIs, both online and in bookstores, but these topics are well beyond the

GRAPHICS INTEROPERABILITY

140

intended scope of this book. Rather, this chapter intends to focus on CUDA C and
the facilities it offers to incorporate it into your graphics applications. If you are
unfamiliar with OpenGL or DirectX, you are unlikely to derive much benefit from
this chapter and may want to skip to the next.

Chapter Objectives8.1
Through the course of this chapter, you will accomplish the following:

You will learn what • graphics interoperability is and why you might use it.

You will learn how to set up a CUDA device for graphics interoperability.•

You will learn how to share data between your CUDA C kernels and OpenGL •
rendering.

Graphics Interoperation8.2
To demonstrate the mechanics of interoperation between graphics and CUDA C,
we’ll write an application that works in two steps. The first step uses a CUDA C
kernel to generate image data. In the second step, the application passes this data
to the OpenGL driver to render. To accomplish this, we will use much of the CUDA
C we have seen in previous chapters along with some OpenGL and GLUT calls.

To start our application, we include the relevant GLUT and CUDA headers in order
to ensure the correct functions and enumerations are defined. We also define the
size of the window into which our application plans to render. At 512 x 512 pixels,
we will do relatively small drawings.

#define GL_GLEXT_PROTOTYPES

#include "GL/glut.h"

#include "cuda.h"

#include "cuda_gl_interop.h"

#include "../common/book.h"

#include "../common/cpu_bitmap.h"

#define DIM 512

GRAPHICS INTEROPERATION

141

8.2 GRAPHICS INTEROPERATION

Additionally, we declare two global variables that will store handles to the data we
intend to share between OpenGL and data. We will see momentarily how we use
these two variables, but they will store different handles to the same buffer. We
need two separate variables because OpenGL and CUDA will both have different
“names” for the buffer. The variable bufferObj will be OpenGL’s name for the
data, and the variable resource will be the CUDA C name for it.

GLuint bufferObj;

cudaGraphicsResource *resource;

Now let’s take a look at the actual application. The first thing we do is select a
CUDA device on which to run our application. On many systems, this is not a
complicated process, since they will often contain only a single CUDA-enabled
GPU. However, an increasing number of systems contain more than one CUDA-
enabled GPU, so we need a method to choose one. Fortunately, the CUDA runtime
provides such a facility to us.

int main(int argc, char **argv) {

 cudaDeviceProp prop;

 int dev;

 memset(&prop, 0, sizeof(cudaDeviceProp));

 prop.major = 1;

 prop.minor = 0;

 HANDLE_ERROR(cudaChooseDevice(&dev, &prop));

You may recall that we saw cudaChooseDevice() in Chapter 3, but since it was
something of an ancillary point, we’ll review it again now. Essentially, this code tells
the runtime to select any GPU that has a compute capability of version 1.0 or better.
It accomplishes this by first creating and clearing a cudaDeviceProp structure
and then by setting its major version to 1 and minor version to 0. It passes this
information to cudaChooseDevice(), which instructs the runtime to select a
GPU in the system that satisfies the constraints specified by the cudaDeviceProp
structure. In the next chapter, we will look more at what is meant by a GPU’s
compute capability, but for now it suffices to say that it roughly indicates the features
a GPU supports. All CUDA-capable GPUs have at least compute capability 1.0, so
the net effect of this call is that the runtime will select any CUDA-capable device
and return an identifier for this device in the variable dev. There is no guarantee

GRAPHICS INTEROPERABILITY

142

that this device is the best or fastest GPU, nor is there a guarantee that the device
will be the same GPU from version to version of the CUDA runtime.

If the result of device selection is so seemingly underwhelming, why do
we bother with all this effort to fill a cudaDeviceProp structure and call
 cudaChooseDevice() to get a valid device ID? Furthermore, we never hassled
with this tomfoolery before, so why now? These are good questions. It turns out
that we need to know the CUDA device ID so that we can tell the CUDA runtime
that we intend to use the device for CUDA and OpenGL. We achieve this with a
call to cudaGLSetGLDevice(), passing the device ID dev we obtained from
cudaChooseDevice():

HANDLE _ ERROR(cudaGLSetGLDevice(dev));

After the CUDA runtime initialization, we can proceed to initialize the OpenGL
driver by calling our GL Utility Toolkit (GLUT) setup functions. This sequence of
calls should look relatively familiar if you’ve used GLUT before:

 // these GLUT calls need to be made before the other GL calls

 glutInit(&argc, argv);

 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA);

 glutInitWindowSize(DIM, DIM);

 glutCreateWindow("bitmap");

At this point in main(), we’ve prepared our CUDA runtime to play nicely with the
OpenGL driver by calling cudaGLSetGLDevice(). Then we initialized GLUT and
created a window named “bitmap” in which to draw our results. Now we can get
on to the actual OpenGL interoperation!

Shared data buffers are the key component to interoperation between CUDA C
kernels and OpenGL rendering. To pass data between OpenGL and CUDA, we will
first need to create a buffer that can be used with both APIs. We start this process
by creating a pixel buffer object in OpenGL and storing the handle in our global
variable GLuint bufferObj:

 glGenBuffers(1, &bufferObj);

 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, bufferObj);

 glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, DIM * DIM * 4,

 NULL, GL_DYNAMIC_DRAW_ARB);

GRAPHICS INTEROPERATION

143

8.2 GRAPHICS INTEROPERATION

If you have never used a pixel buffer object (PBO) in OpenGL, you will typi-
cally create one with these three steps: First, we generate a buffer handle
with glGenBuffers(). Then, we bind the handle to a pixel buffer with
 glBindBuffer(). Finally, we request the OpenGL driver to allocate a buffer for
us with glBufferData(). In this example, we request a buffer to hold DIM x DIM
32-bit values and use the enumerant GL_DYNAMIC_DRAW_ARB to indicate that the
buffer will be modified repeatedly by the application. Since we have no data to preload
the buffer with, we pass NULL as the penultimate argument to glBufferData().

All that remains in our quest to set up graphics interoperability is notifying the
CUDA runtime that we intend to share the OpenGL buffer named bufferObj
with CUDA. We do this by registering bufferObj with the CUDA runtime as a
graphics resource.

 HANDLE_ERROR(

 cudaGraphicsGLRegisterBuffer(&resource,

 bufferObj,

 cudaGraphicsMapFlagsNone)
);

We specify to the CUDA runtime that we intend to use the
OpenGL PBO bufferObj with both OpenGL and CUDA by calling
 cudaGraphicsGLRegisterBuffer(). The CUDA runtime returns a CUDA-
friendly handle to the buffer in the variable resource. This handle will be used to
refer to bufferObj in subsequent calls to the CUDA runtime.

The flag cudaGraphicsMapFlagsNone specifies that there is no particular
behavior of this buffer that we want to specify, although we have the option to
specify with cudaGraphicsMapFlagsReadOnly that the buffer will be read-
only. We could also use cudaGraphicsMapFlagsWriteDiscard to specify
that the previous contents will be discarded, making the buffer essentially
write-only. These flags allow the CUDA and OpenGL drivers to optimize the hard-
ware settings for buffers with restricted access patterns, although they are not
required to be set.

Effectively, the call to glBufferData() requests the OpenGL driver to allocate a
buffer large enough to hold DIM x DIM 32-bit values. In subsequent OpenGL calls,
we’ll refer to this buffer with the handle bufferObj, while in CUDA runtime calls,
we’ll refer to this buffer with the pointer resource. Since we would like to read
from and write to this buffer from our CUDA C kernels, we will need more than just
a handle to the object. We will need an actual address in device memory that can be

GRAPHICS INTEROPERABILITY

144

passed to our kernel. We achieve this by instructing the CUDA runtime to map the
shared resource and then by requesting a pointer to the mapped resource.

 uchar4* devPtr;

 size_t size;

 HANDLE_ERROR(cudaGraphicsMapResources(1, &resource, NULL));

 HANDLE_ERROR(

 cudaGraphicsResourceGetMappedPointer((void**)&devPtr,

 &size,

 resource)

);

We can then use devPtr as we would use any device pointer, except that the data
can also be used by OpenGL as a pixel source. After all these setup shenanigans,
the rest of main() proceeds as follows: First, we launch our kernel, passing it
the pointer to our shared buffer. This kernel, the code of which we have not seen
yet, generates image data to be rendered. Next, we unmap our shared resource.
This call is important to make prior to performing rendering tasks because it
provides synchronization between the CUDA and graphics portions of the applica-
tion. Specifically, it implies that all CUDA operations performed prior to the call
to cudaGraphicsUnmapResources() will complete before ensuing graphics
calls begin.

Lastly, we register our keyboard and display callback functions with GLUT
(key_func and draw_func), and we relinquish control to the GLUT rendering
loop with glutMainLoop().

 dim3 grids(DIM/16,DIM/16);

 dim3 threads(16,16);

 kernel<<<grids,threads>>>(devPtr);

 HANDLE_ERROR(cudaGraphicsUnmapResources(1, &resource, NULL));

 // set up GLUT and kick off main loop

 glutKeyboardFunc(key_func);

 glutDisplayFunc(draw_func);

 glutMainLoop();

}

GRAPHICS INTEROPERATION

145

8.2 GRAPHICS INTEROPERATION

The remainder of the application consists of the three functions we just high-
lighted, kernel(), key_func(), and draw_func(). So, let’s take a look at
those.

The kernel function takes a device pointer and generates image data. In the
following example, we’re using a kernel inspired by the ripple example in
Chapter 5:

// based on ripple code, but uses uchar4, which is the

// type of data graphic interop uses

__global__ void kernel(uchar4 *ptr) {

 // map from threadIdx/BlockIdx to pixel position

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 int offset = x + y * blockDim.x * gridDim.x;

 // now calculate the value at that position

 float fx = x/(float)DIM - 0.5f;

 float fy = y/(float)DIM - 0.5f;

 unsigned char green = 128 + 127 *

 sin(abs(fx*100) - abs(fy*100));

 // accessing uchar4 vs. unsigned char*

 ptr[offset].x = 0;

 ptr[offset].y = green;

 ptr[offset].z = 0;

 ptr[offset].w = 255;

}

Many familiar concepts are at work here. The method for turning thread and block
indices into x- and y-coordinates and a linear offset has been examined several
times. We then perform some reasonably arbitrary computations to determine the
color for the pixel at that (x,y) location, and we store those values to memory.
We’re again using CUDA C to procedurally generate an image on the GPU. The
important thing to realize is that this image will then be handed directly to OpenGL
for rendering without the CPU ever getting involved. On the other hand, in the
ripple example of Chapter 5, we generated image data on the GPU very much like
this, but our application then copied the buffer back to the CPU for display.

GRAPHICS INTEROPERABILITY

146

So, how do we draw the CUDA-generated buffer using OpenGL? Well, if you recall
the setup we performed in main(), you’ll remember the following:

 glBindBuffer(GL _ PIXEL _ UNPACK _ BUFFER _ ARB, bufferObj);

This call bound the shared buffer as a pixel source for the OpenGL driver to
use in all subsequent calls to glDrawPixels(). Essentially, this means that
a call to glDrawPixels() is all that we need in order to render the image
data our CUDA C kernel generated. Consequently, the following is all that our
draw_func() needs to do:

static void draw_func(void) {

 glDrawPixels(DIM, DIM, GL_RGBA, GL_UNSIGNED_BYTE, 0);

 glutSwapBuffers();

}

It’s possible you’ve seen glDrawPixels() with a buffer pointer as the last argu-
ment. The OpenGL driver will copy from this buffer if no buffer is bound as a GL_
PIXEL_UNPACK_BUFFER_ARB source. However, since our data is already on the
GPU and we have bound our shared buffer as the GL_PIXEL_UNPACK_BUFFER_
ARB source, this last parameter instead becomes an offset into the bound buffer.
Because we want to render the entire buffer, this offset is zero for our application.

The last component to this example seems somewhat anticlimactic, but we’ve
decided to give our users a method to exit the application. In this vein, our
key_func() callback responds only to the Esc key and uses this as a signal to
clean up and exit:

static void key_func(unsigned char key, int x, int y) {

 switch (key) {

 case 27:

 // clean up OpenGL and CUDA

 HANDLE_ERROR(cudaGraphicsUnregisterResource(resource));

 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);

 glDeleteBuffers(1, &bufferObj);

 exit(0);

 }

}

GPU RIPPLE WITH GRAPHICS INTEROPERABILITY

147

8.3 GPU RIPPLE WITH GRAPHICS INTEROPERABILITY

Figure 8.1 A screenshot of the hypnotic graphics interoperation example

When run, this example draws a mesmerizing picture in “NVIDIA Green” and
black, shown in Figure 8.1. Try using it to hypnotize your friends (or enemies).

GPU Ripple with Graphics 8.3
Interoperability
In “Section 8.1: Graphics Interoperation,” we referred to Chapter 5’s GPU ripple
example a few times. If you recall, that application created a CPUAnimBitmap
and passed it a function to be called whenever a frame needed to be generated.

int main(void) {

 DataBlock data;

 CPUAnimBitmap bitmap(DIM, DIM, &data);

 data.bitmap = &bitmap;

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_bitmap,

 bitmap.image_size()));

GRAPHICS INTEROPERABILITY

148

 bitmap.anim_and_exit((void (*)(void*,int))generate_frame,

 (void (*)(void*))cleanup);

}

With the techniques we’ve learned in the previous section, we intend to create a
GPUAnimBitmap structure. This structure will serve the same purpose as the
CPUAnimBitmap, but in this improved version, the CUDA and OpenGL compo-
nents will cooperate without CPU intervention. When we’re done, the application
will use a GPUAnimBitmap so that main() will become simply as follows:

int main(void) {

 GPUAnimBitmap bitmap(DIM, DIM, NULL);

 bitmap.anim_and_exit(

 (void (*)(uchar4*,void*,int))generate_frame, NULL);

}

The GPUAnimBitmap structure uses the same calls we just examined in
Section 8.1: Graphics Interoperation. However, now these calls will be abstracted
away in a GPUAnimBitmap structure so that future examples (and potentially
your own applications) will be cleaner.

THE GPUANIMBITMAP STRUCTURE8.3.1

Several of the data members for our GPUAnimBitmap will look familiar to you
from Section 8.1: Graphics Interoperation.

struct GPUAnimBitmap {

 GLuint bufferObj;

 cudaGraphicsResource *resource;

 int width, height;

 void *dataBlock;

 void (*fAnim)(uchar4*,void*,int);

 void (*animExit)(void*);

 void (*clickDrag)(void*,int,int,int,int);

 int dragStartX, dragStartY;

GPU RIPPLE WITH GRAPHICS INTEROPERABILITY

149

8.3 GPU RIPPLE WITH GRAPHICS INTEROPERABILITY

We know that OpenGL and the CUDA runtime will have different names for our
GPU buffer, and we know that we will need to refer to both of these names,
depending on whether we are making OpenGL or CUDA C calls. Therefore, our
structure will store both OpenGL’s bufferObj name and the CUDA runtime’s
resource name. Since we are dealing with a bitmap image that we intend to
display, we know that the image will have a width and height to it.

To allow users of our GPUAnimBitmap to register for certain callback events,
we will also store a void* pointer to arbitrary user data in dataBlock. Our
class will never look at this data but will simply pass it back to any registered
callback functions. The callbacks that a user may register are stored in fAnim,
animExit, and clickDrag. The function fAnim() gets called in every call to
glutIdleFunc(), and this function is responsible for producing the image data
that will be rendered in the animation. The function animExit() will be called
once, when the animation exits. This is where the user should implement cleanup
code that needs to be executed when the animation ends. Finally, clickDrag(),
an optional function, implements the user’s response to mouse click/drag events.
If the user registers this function, it gets called after every sequence of mouse
button press, drag, and release events. The location of the initial mouse click in
this sequence is stored in (dragStartX, dragStartY) so that the start and
endpoints of the click/drag event can be passed to the user when the mouse
button is released. This can be used to implement interactive animations that will
impress your friends.

Initializing a GPUAnimBitmap follows the same sequence of code that we saw
in our previous example. After stashing away arguments in the appropriate
structure members, we start by querying the CUDA runtime for a suitable CUDA
device:

 GPUAnimBitmap(int w, int h, void *d) {

 width = w;

 height = h;

 dataBlock = d;

 clickDrag = NULL;

GRAPHICS INTEROPERABILITY

150

 // first, find a CUDA device and set it to graphic interop

 cudaDeviceProp prop;

 int dev;

 memset(&prop, 0, sizeof(cudaDeviceProp));

 prop.major = 1;

 prop.minor = 0;

 HANDLE_ERROR(cudaChooseDevice(&dev, &prop));

After finding a compatible CUDA device, we make the important
 cudaGLSetGLDevice() call to the CUDA runtime in order to notify it that we
intend to use dev as a device for interoperation with OpenGL:

 cudaGLSetGLDevice(dev);

Since our framework uses GLUT to create a windowed rendering environment, we
need to initialize GLUT. This is unfortunately a bit awkward, since glutInit()
wants command-line arguments to pass to the windowing system. Since we have
none we want to pass, we would like to simply specify zero command-line argu-
ments. Unfortunately, some versions of GLUT have a bug that cause applications
to crash when zero arguments are given. So, we trick GLUT into thinking that
we’re passing an argument, and as a result, life is good.

 int c=1;

 char *foo = "name";

 glutInit(&c, &foo);

We continue initializing GLUT exactly as we did in the previous example. We
create a window in which to render, specifying a title with the string “bitmap.” If
you’d like to name your window something more interesting, be our guest.

 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA);

 glutInitWindowSize(width, height);

 glutCreateWindow("bitmap");

GPU RIPPLE WITH GRAPHICS INTEROPERABILITY

151

8.3 GPU RIPPLE WITH GRAPHICS INTEROPERABILITY

Next, we request for the OpenGL driver to allocate a buffer handle that we imme-
diately bind to the GL_PIXEL_UNPACK_BUFFER_ARB target to ensure that future
calls to glDrawPixels() will draw to our interop buffer:

 glGenBuffers(1, &bufferObj);

 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, bufferObj);

Last, but most certainly not least, we request that the OpenGL driver allocate a
region of GPU memory for us. Once this is done, we inform the CUDA runtime of
this buffer and request a CUDA C name for this buffer by registering bufferObj
with cudaGraphicsGLRegisterBuffer().

 glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, width * height * 4,

 NULL, GL_DYNAMIC_DRAW_ARB);

 HANDLE_ERROR(

 cudaGraphicsGLRegisterBuffer(&resource,

 bufferObj,

 cudaGraphicsMapFlagsNone));

 }

With the GPUAnimBitmap set up, the only remaining concern is exactly how
we perform the rendering. The meat of the rendering will be done in our
 glutIdleFunction(). This function will essentially do three things. First, it
maps our shared buffer and retrieves a GPU pointer for this buffer.

 // static method used for GLUT callbacks

 static void idle_func(void) {

 static int ticks = 1;

 GPUAnimBitmap* bitmap = *(get_bitmap_ptr());

 uchar4* devPtr;

 size_t size;

GRAPHICS INTEROPERABILITY

152

 HANDLE_ERROR(

 cudaGraphicsMapResources(1, &(bitmap->resource), NULL)

);

 HANDLE_ERROR(

 cudaGraphicsResourceGetMappedPointer((void**)&devPtr,

 &size,

 bitmap->resource)

);

Second, it calls the user-specified function fAnim() that presumably will launch
a CUDA C kernel to fill the buffer at devPtr with image data.

 bitmap->fAnim(devPtr, bitmap->dataBlock, ticks++);

And lastly, it unmaps the GPU pointer that will release the buffer for use by
the OpenGL driver in rendering. This rendering will be triggered by a call to
glutPostRedisplay().

 HANDLE_ERROR(

 cudaGraphicsUnmapResources(1,

 &(bitmap->resource),

 NULL));

 glutPostRedisplay();

 }

The remainder of the GPUAnimBitmap structure consists of important but some-
what tangential infrastructure code. If you have an interest in it, you should by all
means examine it. But we feel that you’ll be able to proceed successfully, even if
you lack the time or interest to digest the rest of the code in GPUAnimBitmap.

GPU RIPPLE REDUX8.3.2

Now that we have a GPU version of CPUAnimBitmap, we can proceed to
retrofit our GPU ripple application to perform its animation entirely on the GPU.
To begin, we will include gpu_anim.h, the home of our implementation of

GPU RIPPLE WITH GRAPHICS INTEROPERABILITY

153

8.3 GPU RIPPLE WITH GRAPHICS INTEROPERABILITY

GPUAnimBitmap. We also include nearly the same kernel as we examined in
Chapter 5.

#include "../common/book.h"

#include "../common/gpu_anim.h"

#define DIM 1024

__global__ void kernel(uchar4 *ptr, int ticks) {

 // map from threadIdx/BlockIdx to pixel position

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 int offset = x + y * blockDim.x * gridDim.x;

 // now calculate the value at that position

 float fx = x - DIM/2;

 float fy = y - DIM/2;

 float d = sqrtf(fx * fx + fy * fy);

 unsigned char grey = (unsigned char)(128.0f + 127.0f *

 cos(d/10.0f -

 ticks/7.0f) /

 (d/10.0f + 1.0f));

 ptr[offset].x = grey;

 ptr[offset].y = grey;

 ptr[offset].z = grey;

 ptr[offset].w = 255;

}

The one and only change we’ve made is highlighted. The reason for this change
is because OpenGL interoperation requires that our shared surfaces be “graphics
friendly.” Because real-time rendering typically uses arrays of four-component
(red/green/blue/alpha) data elements, our target buffer is no longer simply an
array of unsigned char as it previously was. It’s now required to be an array of
type uchar4. In reality, we treated our buffer in Chapter 5 as a four-component
buffer, so we always indexed it with ptr[offset*4+k], where k indicates the
component from 0 to 3. But now, the four-component nature of the data is made
explicit with the switch to a uchar4 type.

GRAPHICS INTEROPERABILITY

154

Since kernel() is a CUDA C function that generates image data, all that
remains is writing a host function that will be used as a callback in the
idle_func() member of GPUAnimBitmap. For our current application,
all this function does is launch the CUDA C kernel:

void generate_frame(uchar4 *pixels, void*, int ticks) {

 dim3 grids(DIM/16,DIM/16);

 dim3 threads(16,16);

 kernel<<<grids,threads>>>(pixels, ticks);

}

That’s basically everything we need, since all of the heavy lifting was
done in the GPUAnimBitmap structure. To get this party started, we just
create a GPUAnimBitmap and register our animation callback function,
generate_frame().

int main(void) {

 GPUAnimBitmap bitmap(DIM, DIM, NULL);

 bitmap.anim_and_exit(

 (void (*)(uchar4*,void*,int))generate_frame, NULL);

}

Heat Transfer with Graphics Interop8.4
So, what has been the point of doing all of this? If you look at the internals of the
CPUAnimBitmap, the structure we used for previous animation examples, we
would see that it works almost exactly like the rendering code in Section 8.1:
Graphics Interoperation.

Almost.

The key difference between the CPUAnimBitmap and the previous example is
buried in the call to glDrawPixels().

HEAT TRANSFER WITH GRAPHICS INTEROP

155

8.4 HEAT TRANSFER WITH GRAPHICS INTEROP

 glDrawPixels(bitmap->x,

 bitmap->y,

 GL_RGBA,

 GL_UNSIGNED_BYTE,

 bitmap->pixels);

We remarked in the first example of this chapter that you may have previously
seen calls to glDrawPixels() with a buffer pointer as the last argument.
Well, if you hadn’t before, you have now. This call in the Draw() routine of
CPUAnimBitmap triggers a copy of the CPU buffer in bitmap->pixels to the
GPU for rendering. To do this, the CPU needs to stop what it’s doing and initiate
a copy onto the GPU for every frame. This requires synchronization between the
CPU and GPU and additional latency to initiate and complete a transfer over the
PCI Express bus. Since the call to glDrawPixels() expects a host pointer in
the last argument, this also means that after generating a frame of image data
with a CUDA C kernel, our Chapter 5 ripple application needed to copy the frame
from the GPU to the CPU with a cudaMemcpy().

void generate_frame(DataBlock *d, int ticks) {

 dim3 grids(DIM/16,DIM/16);

 dim3 threads(16,16);

 kernel<<<grids,threads>>>(d->dev_bitmap, ticks);

 HANDLE_ERROR(cudaMemcpy(d->bitmap->get_ptr(),

 d->dev_bitmap,

 d->bitmap->image_size(),

 cudaMemcpyDeviceToHost));

}

Taken together, these facts mean that our original GPU ripple application
was more than a little silly. We used CUDA C to compute image values for our
rendering in each frame, but after the computations were done, we copied the
buffer to the CPU, which then copied the buffer back to the GPU for display. This
means that we introduced unnecessary data transfers between the host and

GRAPHICS INTEROPERABILITY

156

the device that stood between us and maximum performance. Let’s revisit a
compute-intensive animation application that might see its performance improve
by migrating it to use graphics interoperation for its rendering.

If you recall the previous chapter’s heat simulation application, you will
remember that it also used CPUAnimBitmap in order to display the output of its
simulation computations. We will modify this application to use our newly imple-
mented GPUAnimBitmap structure and look at how the resulting performance
changes. As with the ripple example, our GPUAnimBitmap is almost a perfect
drop-in replacement for CPUAnimBitmap, with the exception of the unsigned
char to uchar4 change. So, the signature of our animation routine changes in
order to accommodate this shift in data types.

void anim_gpu(uchar4* outputBitmap, DataBlock *d, int ticks) {

 HANDLE_ERROR(cudaEventRecord(d->start, 0));

 dim3 blocks(DIM/16,DIM/16);

 dim3 threads(16,16);

 // since tex is global and bound, we have to use a flag to

 // select which is in/out per iteration

 volatile bool dstOut = true;

 for (int i=0; i<90; i++) {

 float *in, *out;

 if (dstOut) {

 in = d->dev_inSrc;

 out = d->dev_outSrc;

 } else {

 out = d->dev_inSrc;

 in = d->dev_outSrc;

 }

 copy_const_kernel<<<blocks,threads>>>(in);

 blend_kernel<<<blocks,threads>>>(out, dstOut);

 dstOut = !dstOut;

 }

 float_to_color<<<blocks,threads>>>(outputBitmap,

 d->dev_inSrc);

HEAT TRANSFER WITH GRAPHICS INTEROP

157

8.4 HEAT TRANSFER WITH GRAPHICS INTEROP

 HANDLE_ERROR(cudaEventRecord(d->stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(d->stop));

 float elapsedTime;

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 d->start, d->stop));

 d->totalTime += elapsedTime;

 ++d->frames;

 printf("Average Time per frame: %3.1f ms\n",

 d->totalTime/d->frames);

}

Since the float_to_color() kernel is the only function that actually uses the
outputBitmap, it’s the only other function that needs modification as a result
of our shift to uchar4. This function was simply considered utility code in the
previous chapter, and we will continue to consider it utility code. However, we
have overloaded this function and included both unsigned char and uchar4
versions in book.h. You will notice that the differences between these func-
tions are identical to the differences between kernel() in the CPU-animated
and GPU-animated versions of GPU ripple. Most of the code for the float_to_
color() kernels has been omitted for clarity, but we encourage you to consult
book.h if you’re dying to see the details.

__global__ void float_to_color(unsigned char *optr,

 const float *outSrc) {

 // convert floating-point value to 4-component color

 optr[offset*4 + 0] = value(m1, m2, h+120);

 optr[offset*4 + 1] = value(m1, m2, h);

 optr[offset*4 + 2] = value(m1, m2, h -120);

 optr[offset*4 + 3] = 255;

}

GRAPHICS INTEROPERABILITY

158

__global__ void float_to_color(uchar4 *optr,

 const float *outSrc) {

 // convert floating-point value to 4-component color

 optr[offset].x = value(m1, m2, h+120);

 optr[offset].y = value(m1, m2, h);

 optr[offset].z = value(m1, m2, h -120);

 optr[offset].w = 255;

}

Outside of these changes, the only major difference is in the change from
CPUAnimBitmap to GPUAnimBitmap to perform animation.

int main(void) {

 DataBlock data;

 GPUAnimBitmap bitmap(DIM, DIM, &data);

 data.totalTime = 0;

 data.frames = 0;

 HANDLE_ERROR(cudaEventCreate(&data.start));

 HANDLE_ERROR(cudaEventCreate(&data.stop));

 int imageSize = bitmap.image_size();

 // assume float == 4 chars in size (i.e., rgba)

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_inSrc,

 imageSize));

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_outSrc,

 imageSize));

 HANDLE_ERROR(cudaMalloc((void**)&data.dev_constSrc,

 imageSize));

 HANDLE_ERROR(cudaBindTexture(NULL, texConstSrc,

 data.dev_constSrc,

 imageSize));

HEAT TRANSFER WITH GRAPHICS INTEROP

159

8.4 HEAT TRANSFER WITH GRAPHICS INTEROP

 HANDLE_ERROR(cudaBindTexture(NULL, texIn,

 data.dev_inSrc,

 imageSize));

 HANDLE_ERROR(cudaBindTexture(NULL, texOut,

 data.dev_outSrc,

 imageSize));

 // initialize the constant data

 float *temp = (float*)malloc(imageSize);

 for (int i=0; i<DIM*DIM; i++) {

 temp[i] = 0;

 int x = i % DIM;

 int y = i / DIM;

 if ((x>300) && (x<600) && (y>310) && (y<601))

 temp[i] = MAX_TEMP;

 }

 temp[DIM*100+100] = (MAX_TEMP + MIN_TEMP)/2;

 temp[DIM*700+100] = MIN_TEMP;

 temp[DIM*300+300] = MIN_TEMP;

 temp[DIM*200+700] = MIN_TEMP;

 for (int y=800; y<900; y++) {

 for (int x=400; x<500; x++) {

 temp[x+y*DIM] = MIN_TEMP;

 }

 }

 HANDLE_ERROR(cudaMemcpy(data.dev_constSrc, temp,

 imageSize,

 cudaMemcpyHostToDevice));

 // initialize the input data

 for (int y=800; y<DIM; y++) {

 for (int x=0; x<200; x++) {

 temp[x+y*DIM] = MAX_TEMP;

 }

 }

GRAPHICS INTEROPERABILITY

160

 HANDLE_ERROR(cudaMemcpy(data.dev_inSrc, temp,

 imageSize,

 cudaMemcpyHostToDevice));

 free(temp);

 bitmap.anim_and_exit((void (*)(uchar4*,void*,int))anim_gpu,

 (void (*)(void*))anim_exit);

}

Although it might be instructive to take a glance at the rest of this enhanced heat
simulation application, it is not sufficiently different from the previous chapter’s
version to warrant more description. The important component is answering the
question, how does performance change now that we’ve completely migrated the
application to the GPU? Without having to copy every frame back to the host for
display, the situation should be much happier than it was previously.

So, exactly how much better is it to use the graphics interoperability to perform
the rendering? Previously, the heat transfer example consumed about 25.3ms per
frame on our GeForce GTX 285–based test machine. After converting the appli-
cation to use graphics interoperability, this drops by 15 percent to 21.6ms per
frame. The net result is that our rendering loop is 15 percent faster and no longer
requires intervention from the host every time we want to display a frame. That’s
not bad for a day’s work!

DirectX Interoperability8.5
Although we’ve looked only at examples that use interoperation with the OpenGL
rendering system, DirectX interoperation is nearly identical. You will still use a
cudaGraphicsResource to refer to buffers that you share between DirectX
and CUDA, and you will still use calls to cudaGraphicsMapResources() and
cudaGraphicsResourceGetMappedPointer() to retrieve CUDA-friendly
pointers to these shared resources.

For the most part, the calls that differ between OpenGL and DirectX interoperability
have embarrassingly simple translations to DirectX. For example, rather than
calling cudaGLSetGLDevice(), we call cudaD3D9SetDirect3DDevice()
to specify that a CUDA device should be enabled for Direct3D 9.0 interoperability.

CHAPTER REVIEW

161

8.6 CHAPTER REVIEW

Likewise, cudaD3D10SetDirect3DDevice() enables a device for Direct3D 10
interoperation and cudaD3D11SetDirect3DDevice() for Direct3D 11.

The details of DirectX interoperability probably will not surprise you if you’ve
worked through this chapter’s OpenGL examples. But if you want to use DirectX
interoperation and want a small project to get started, we suggest that you
migrate this chapter’s examples to use DirectX. To get started, we recom-
mend consulting the NVIDIA CUDA Programming Guide for a reference on the
API and taking a look at the GPU Computing SDK code samples on DirectX
interoperability.

Chapter Review8.6
Although much of this book has been devoted to using the GPU for parallel,
general-purpose computing, we can’t forget the GPU’s successful day job as a
rendering engine. Many applications require or would benefit from the use of
standard computer graphics rendering. Since the GPU is master of the rendering
domain, all that stood between us and the exploitation of these resources was
a lack of understanding of the mechanics in convincing the CUDA runtime and
graphics drivers to cooperate. Now that we have seen how this is done, we
no longer need the host to intervene in displaying the graphical results of our
computations. This simultaneously accelerates the application’s rendering loop
and frees the host to perform other computations in the meantime. Otherwise,
if there are no other computations to be performed, it leaves our system more
responsive to other events or applications.

There are many other ways to use graphics interoperability that we left unex-
plored. We looked primarily at using a CUDA C kernel to write into a pixel buffer
object for display in a window. This image data can also be used as a texture that
can be applied to any surface in the scene. In addition to modifying pixel buffer
objects, you can also share vertex buffer objects between CUDA and the graphics
engine. Among other things, this allows you to write CUDA C kernels that perform
collision detection between objects or compute vertex displacement maps to be
used to render objects or surfaces that interact with the user or their surround-
ings. If you’re interested in computer graphics, CUDA C’s graphics interoperability
API enables a slew of new possibilities for your applications!

This page intentionally left blank

163

Chapter 9

Atomics

In the first half of the book, we saw many occasions where something compli-
cated to accomplish with a single-threaded application becomes quite easy when
implemented using CUDA C. For example, thanks to the behind-the-scenes work
of the CUDA runtime, we no longer needed for() loops in order to do per-pixel
updates in our animations or heat simulations. Likewise, thousands of parallel
blocks and threads get created and automatically enumerated with thread and
block indices simply by calling a __global__ function from host code.

On the other hand, there are some situations where something incredibly simple
in single-threaded applications actually presents a serious problem when we try
to implement the same algorithm on a massively parallel architecture. In this
chapter, we’ll take a look at some of the situations where we need to use special
primitives in order to safely accomplish things that can be quite trivial to do in a
traditional, single-threaded application.

AtomIcs

164

Chapter Objectives9.1
Through the course of this chapter, you will accomplish the following:

You will learn about the • compute capability of various NVIDIA GPUs.

You will learn about what atomic operations are and why you might need them.•

You will learn how to perform arithmetic with atomic operations in your CUDA •
C kernels.

Compute Capability9.2
All of the topics we have covered to this point involve capabilities that every
CUDA-enabled GPU possesses. For example, every GPU built on the CUDA
Architecture can launch kernels, access global memory, and read from constant
and texture memories. But just like different models of CPUs have varying capa-
bilities and instruction sets (for example, MMX, SSE, or SSE2), so too do CUDA-
enabled graphics processors. NVIDIA refers to the supported features of a GPU as
its compute capability.

THE COMPUTE CAPABILITY OF NVIDIA GPUS9.2.1

As of press time, NVIDIA GPUs could potentially support compute capabilities 1.0,
1.1, 1.2, 1.3, or 2.0. Higher-capability versions represent supersets of the versions
below them, implementing a “layered onion” or “Russian nesting doll” hierarchy
(depending on your metaphorical preference). For example, a GPU with compute
capability 1.2 supports all the features of compute capabilities 1.0 and 1.1. The
NVIDIA CUDA Programming Guide contains an up-to-date list of all CUDA-capable
GPUs and their corresponding compute capability. Table 9.1 lists the NVIDIA GPUs
available at press time. The compute capability supported by each GPU is listed
next to the device’s name.

COMPUTE CAPABILITY

165

9.2 COMPUTE CAPABILITY

Table 9.1 Selected CUDA-Enabled GPUs and Their Corresponding Compute
Capabilities

GPU
ComPUte
CAPAbility

GeForce GTX 480, GTX 470 2.0

GeForce GTX 295 1.3

GeForce GTX 285, GTX 280 1.3

GeForce GTX 260 1.3

GeForce 9800 GX2 1.1

GeForce GTS 250, GTS 150, 9800 GTX, 9800 GTX+, 8800 GTS 512 1.1

GeForce 8800 Ultra, 8800 GTX 1.0

GeForce 9800 GT, 8800 GT, GTX 280M, 9800M GTX 1.1

GeForce GT 130, 9600 GSO, 8800 GS, 8800M GTX, GTX 260M, 9800M GT 1.1

GeForce 8800 GTS 1.0

GeForce 9600 GT, 8800M GTS, 9800M GTS 1.1

GeForce 9700M GT 1.1

GeForce GT 120, 9500 GT, 8600 GTS, 8600 GT, 9700M GT, 9650M GS, 9600M
GT, 9600M GS, 9500M GS, 8700M GT, 8600M GT, 8600M GS 1.1

GeForce G100, 8500 GT, 8400 GS, 8400M GT, 9500M G, 9300M G, 8400M GS,
9400 mGPU, 9300 mGPU, 8300 mGPU, 8200 mGPU, 8100 mGPU 1.1

GeForce 9300M GS, 9200M GS, 9100M G, 8400M G 1.1

Tesla S2070, S2050, C2070, C2050 2.0

Tesla S1070, C1060 1.3

Continued

AtomIcs

166

GPU
ComPUte
CAPAbility

Tesla S870 , D870, C870 1.0

Quadro Plex 2200 D2 1.3

Quadro Plex 2100 D4 1.1

Quadro Plex 2100 Model S4 1.0

Quadro Plex 1000 Model IV 1.0

Quadro FX 5800 1.3

Quadro FX 4800 1.3

Quadro FX 4700 X2 1.1

Quadro FX 3700M 1.1

Quadro FX 5600 1.0

Quadro FX 3700 1.1

Quadro FX 3600M 1.1

Quadro FX 4600 1.0

Quadro FX 2700M 1.1

Quadro FX 1700, FX 570, NVS 320M, FX 1700M, FX 1600M, FX 770M, FX
570M 1.1

Quadro FX 370, NVS 290, NVS 140M, NVS 135M, FX 360M 1.1

Quadro FX 370M, NVS 130M 1.1

Table 9.1 Selected CUDA-Enabled GPUs and Their Corresponding Compute
Capabilities (Continued)

COMPUTE CAPABILITY

167

9.2 COMPUTE CAPABILITY

Of course, since NVIDIA releases new graphics processors all the time, this table
will undoubtedly be out-of-date the moment this book is published. Fortunately,
NVIDIA has a website, and on this website you will find the CUDA Zone. Among
other things, the CUDA Zone is home to the most up-to-date list of supported
CUDA devices. We recommend that you consult this list before doing anything
drastic as a result of being unable to find your new GPU in Table 9.1. Or you can
simply run the example from Chapter 3 that prints the compute capability of each
CUDA device in the system.

Because this is the chapter on atomics, of particular relevance is the hardware
capability to perform atomic operations on memory. Before we look at what
atomic operations are and why you care, you should know that atomic opera-
tions on global memory are supported only on GPUs of compute capability 1.1
or higher. Furthermore, atomic operations on shared memory require a GPU of
compute capability 1.2 or higher. Because of the superset nature of compute
capability versions, GPUs of compute capability 1.2 therefore support both shared
memory atomics and global memory atomics. Similarly, GPUs of compute capa-
bility 1.3 support both of these as well.

If it turns out that your GPU is of compute capability 1.0 and it doesn’t support
atomic operations on global memory, well maybe we’ve just given you the perfect
excuse to upgrade! If you decide you’re not ready to splurge on a new atomics-
enabled graphics processor, you can continue to read about atomic operations
and the situations in which you might want to use them. But if you find it too
heartbreaking that you won’t be able to run the examples, feel free to skip to the
next chapter.

COMPILING FOR A MINIMUM COMPUTE CAPABILITY9.2.2

Suppose that we have written code that requires a certain minimum compute
capability. For example, imagine that you’ve finished this chapter and go off to
write an application that relies heavily on global memory atomics. Having studied
this text extensively, you know that global memory atomics require a compute
capability of 1.1. To compile your code, you need to inform the compiler that the
kernel cannot run on hardware with a capability less than 1.1. Moreover, in telling
the compiler this, you’re also giving it the freedom to make other optimizations
that may be available only on GPUs of compute capability 1.1 or greater. Informing

AtomIcs

168

the compiler of this is as simple as adding a command-line option to your invoca-
tion of nvcc:

 nvcc -arch=sm _ 11

Similarly, to build a kernel that relies on shared memory atomics, you need to
inform the compiler that the code requires compute capability 1.2 or greater:

 nvcc -arch=sm _ 12

Atomic Operations Overview9.3
Programmers typically never need to use atomic operations when writing tradi-
tional single-threaded applications. If this is the situation with you, don’t worry;
we plan to explain what they are and why we might need them in a multithreaded
application. To clarify atomic operations, we’ll look at one of the first things you
learned when learning C or C++, the increment operator:

 x++;

This is a single expression in standard C, and after executing this expression, the
value in x should be one greater than it was prior to executing the increment. But
what sequence of operations does this imply? To add one to the value of x, we
first need to know what value is currently in x. After reading the value of x, we
can modify it. And finally, we need to write this value back to x.

So the three steps in this operation are as follows:

Read the value in 1. x.

Add 1 to the value read in step 1.2.

Write the result back to 3. x.

Sometimes, this process is generally called a read-modify-write operation, since
step 2 can consist of any operation that changes the value that was read from x.

Now consider a situation where two threads need to perform this increment on
the value in x. Let’s call these threads A and B. For A and B to both increment the
value in x, both threads need to perform the three operations we’ve described.
Let’s suppose x starts with the value 7. Ideally we would like thread A and thread
B to do the steps shown in Table 9.2.

AtomIc oPerAtIons overvIew

169

9.3 ATOMIC OPERATIONS OVERVIEW

Table 9.2 Two threads incrementing the value in x

StEP ExAMPlE

1. Thread A reads the value in x. A reads 7 from x.

2. Thread A adds 1 to the value it read. A computes 8.

3. Thread A writes the result back to x. x <- 8.

4. Thread B reads the value in x. B reads 8 from x.

5. Thread B adds 1 to the value it read. B computes 9.

6. Thread B writes the result back to x. x <- 9.

Since x starts with the value 7 and gets incremented by two threads, we would
expect it to hold the value 9 after they’ve completed. In the previous sequence
of operations, this is indeed the result we obtain. Unfortunately, there are many
other orderings of these steps that produce the wrong value. For example,
consider the ordering shown in Table 9.3 where thread A and thread B’s opera-
tions become interleaved with each other.

Table 9.3 Two threads incrementing the value in x with interleaved operations

StEP ExAMPlE

Thread A reads the value in x. A reads 7 from x.

Thread B reads the value in x. B reads 7 from x.

Thread A adds 1 to the value it read. A computes 8.

Thread B adds 1 to the value it read. B computes 8.

Thread A writes the result back to x. x <- 8.

Thread B writes the result back to x. x <- 8.

AtomIcs

170

Therefore, if our threads get scheduled unfavorably, we end up computing the
wrong result. There are many other orderings for these six operations, some
of which produce correct results and some of which do not. When moving from
a single-threaded to a multithreaded version of this application, we suddenly
have potential for unpredictable results if multiple threads need to read or write
shared values.

In the previous example, we need a way to perform the read-modify-write without
being interrupted by another thread. Or more specifically, no other thread can
read or write the value of x until we have completed our operation. Because
the execution of these operations cannot be broken into smaller parts by other
threads, we call operations that satisfy this constraint as atomic. CUDA C
supports several atomic operations that allow you to operate safely on memory,
even when thousands of threads are potentially competing for access.

Now we’ll take a look at an example that requires the use of atomic operations to
compute correct results.

Computing Histograms9.4
Oftentimes, algorithms require the computation of a histogram of some set of
data. If you haven’t had any experience with histograms in the past, that’s not
a big deal. Essentially, given a data set that consists of some set of elements, a
histogram represents a count of the frequency of each element. For example, if
we created a histogram of the letters in the phrase Programming with CUDA C, we
would end up with the result shown in Figure 9.1.

Although simple to describe and understand, computing histograms of data
arises surprisingly often in computer science. It’s used in algorithms for image
processing, data compression, computer vision, machine learning, audio
encoding, and many others. We will use histogram computation as the algorithm
for the following code examples.

2 2 1 2 1 2 2 1 1 1 2 1 1 1

A C D G H I M N O P R T U W

Figure 9.1 Letter frequency histogram built from the string Programming with
CUDA C

COMPUTING HISTOGRAMS

171

9.4 COMPUTING HISTOGRAMS

CPU HISTOGRAM COMPUTATION9.4.1

Because the computation of a histogram may not be familiar to all readers, we’ll
start with an example of how to compute a histogram on the CPU. This example
will also serve to illustrate how computing a histogram is relatively simple in a
single-threaded CPU application. The application will be given some large stream
of data. In an actual application, the data might signify anything from pixel colors
to audio samples, but in our sample application, it will be a stream of randomly
generated bytes. We can create this random stream of bytes using a utility func-
tion we have provided called big_random_block(). In our application, we
create 100MB of random data.

#include "../common/book.h"

#define SIZE (100*1024*1024)

int main(void) {

 unsigned char *buffer = (unsigned char*)big_random_block(SIZE);

Since each random 8-bit byte can be any of 256 different values (from 0x00 to
0xFF), our histogram needs to contain 256 bins in order to keep track of the
number of times each value has been seen in the data. We create a 256-bin array
and initialize all the bin counts to zero.

 unsigned int histo[256];

 for (int i=0; i<256; i++)

 histo[i] = 0;

Once our histogram has been created and all the bins are initialized to zero,
we need to tabulate the frequency with which each value appears in the data
contained in buffer[]. The idea here is that whenever we see some value z in
the array buffer[], we want to increment the value in bin z of our histogram.
This way, we’re counting the number of times we have seen an occurrence of the
value z.

AtomIcs

172

If buffer[i] is the current value we are looking at, we want to increment the
count we have in the bin numbered buffer[i]. Since bin buffer[i] is located
at histo[buffer[i]], we can increment the appropriate counter in a single
line of code.

 histo[buffer[i]]++;

We do this for each element in buffer[] with a simple for() loop:

 for (int i=0; i<SIZE; i++)

 histo[buffer[i]]++;

At this point, we’ve completed our histogram of the input data. In a full applica-
tion, this histogram might be the input to the next step of computation. In our
simple example, however, this is all we care to compute, so we end the applica-
tion by verifying that all the bins of our histogram sum to the expected value.

 long histoCount = 0;

 for (int i=0; i<256; i++) {

 histoCount += histo[i];

 }

 printf("Histogram Sum: %ld\n", histoCount);

If you’ve followed closely, you will realize that this sum will always be the same,
regardless of the random input array. Each bin counts the number of times we
have seen the corresponding data element, so the sum of all of these bins should
be the total number of data elements we’ve examined. In our case, this will be the
value SIZE.

And needless to say (but we will anyway), we clean up after ourselves and return.

 free(buffer);

 return 0;

}

COMPUTING HISTOGRAMS

173

9.4 COMPUTING HISTOGRAMS

On our benchmark machine, a Core 2 Duo, the histogram of this 100MB array of
data can be constructed in 0 .416 seconds. This will provide a baseline perfor-
mance for the GPU version we intend to write.

GPU HISTOGRAM COMPUTATION9.4.2

We would like to adapt the histogram computation example to run on the GPU.
If our input array is large enough, it might save a considerable amount of time
to have different threads examining different parts of the buffer. Having different
threads read different parts of the input should be easy enough. After all, it’s very
similar to things we have seen so far. The problem with computing a histogram
from the input data arises from the fact that multiple threads may want to incre-
ment the same bin of the output histogram at the same time. In this situation, we
will need to use atomic increments to avoid a situation like the one described in
Section 9.2: Atomic Operations Overview.

Our main() routine looks very similar to the CPU version, although we will need
to add some of the CUDA C plumbing in order to get input to the GPU and results
from the GPU. However, we start exactly as we did on the CPU:

int main(void) {

 unsigned char *buffer = (unsigned char*)big_random_block(SIZE);

We will be interested in measuring how our code performs, so we initialize events
for timing exactly like we always have.

 cudaEvent_t start, stop;

 HANDLE_ERROR(cudaEventCreate(&start));

 HANDLE_ERROR(cudaEventCreate(&stop));

 HANDLE_ERROR(cudaEventRecord(start, 0));

After setting up our input data and events, we look to GPU memory. We
will need to allocate space for our random input data and our output histo-
gram. After allocating the input buffer, we copy the array we generated with

AtomIcs

174

big_random_block() to the GPU. Likewise, after allocating the histogram, we
initialize it to zero just like we did in the CPU version.

 // allocate memory on the GPU for the file's data

 unsigned char *dev_buffer;

 unsigned int *dev_histo;

 HANDLE_ERROR(cudaMalloc((void**)&dev_buffer, SIZE));

 HANDLE_ERROR(cudaMemcpy(dev_buffer, buffer, SIZE,

 cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMalloc((void**)&dev_histo,

 256 * sizeof(long)));

 HANDLE_ERROR(cudaMemset(dev_histo, 0,

 256 * sizeof(int)));

You may notice that we slipped in a new CUDA runtime function, cudaMemset().
This function has a similar signature to the standard C function memset(), and
the two functions behave nearly identically. The difference in signature is between
these functions is that cudaMemset() returns an error code while the C library
function memset() does not. This error code will inform the caller whether
anything bad happened while attempting to set GPU memory. Aside from the
error code return, the only difference is that cudaMemset() operates on GPU
memory while memset() operates on host memory.

After initializing the input and output buffers, we are ready to compute our histo-
gram. You will see how we prepare and launch the histogram kernel momentarily.
For the time being, assume that we have computed the histogram on the GPU.
After finishing, we need to copy the histogram back to the CPU, so we allocate a
256-entry array and perform a copy from device to host.

 unsigned int histo[256];

 HANDLE_ERROR(cudaMemcpy(histo, dev_histo,

 256 * sizeof(int),

 cudaMemcpyDeviceToHost));

COMPUTING HISTOGRAMS

175

9.4 COMPUTING HISTOGRAMS

At this point, we are done with the histogram computation so we can stop our
timers and display the elapsed time. Just like the previous event code, this is
identical to the timing code we’ve used for several chapters.

 // get stop time, and display the timing results

 HANDLE_ERROR(cudaEventRecord(stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(stop));

 float elapsedTime;

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 start, stop));

 printf("Time to generate: %3.1f ms\n", elapsedTime);

At this point, we could pass the histogram as input to another stage in the algo-
rithm, but since we are not using the histogram for anything else, we will simply
verify that the computed GPU histogram matches what we get on the CPU. First,
we verify that the histogram sum matches what we expect. This is identical to the
CPU code shown here:

 long histoCount = 0;

 for (int i=0; i<256; i++) {

 histoCount += histo[i];

 }

 printf("Histogram Sum: %ld\n", histoCount);

To fully verify the GPU histogram, though, we will use the CPU to compute the
same histogram. The obvious way to do this would be to allocate a new histogram
array, compute a histogram from the input using the code from Section 9.3.1:
CPU Histogram Computation, and, finally, ensure that each bin in the GPU and
CPU version match. But rather than allocate a new histogram array, we’ll opt to
start with the GPU histogram and compute the CPU histogram “in reverse.”

By computing the histogram “in reverse,” we mean that rather than starting
at zero and incrementing bin values when we see data elements, we will start
with the GPU histogram and decrement the bin’s value when the CPU sees data
elements. Therefore, the CPU has computed the same histogram as the GPU if
and only if every bin has the value zero when we are finished. In some sense, we
are computing the difference between these two histograms. The code will look

AtomIcs

176

remarkably like the CPU histogram computation but with a decrement operator
instead of an increment operator.

 // verify that we have the same counts via CPU

 for (int i=0; i<SIZE; i++)

 histo[buffer[i]]--;

 for (int i=0; i<256; i++) {

 if (histo[i] != 0)

 printf("Failure at %d!\n", i);

 }

As usual, the finale involves cleaning up our allocated CUDA events, GPU
memory, and host memory.

 HANDLE_ERROR(cudaEventDestroy(start));

 HANDLE_ERROR(cudaEventDestroy(stop));

 cudaFree(dev_histo);

 cudaFree(dev_buffer);

 free(buffer);

 return 0;

}

Before, we assumed that we had launched a kernel that computed our histogram
and then pressed on to discuss the aftermath. Our kernel launch is slightly more
complicated than usual because of performance concerns. Because the histo-
gram contains 256 bins, using 256 threads per block proves convenient as well as
results in high performance. But we have a lot of flexibility in terms of the number
of blocks we launch. For example, with 100MB of data, we have 104,857,600 bytes
of data. We could launch a single block and have each thread examine 409,600
data elements. Likewise, we could launch 409,600 blocks and have each thread
examine a single data element.

As you might have guessed, the optimal solution is at a point between these two
extremes. By running some performance experiments, optimal performance is
achieved when the number of blocks we launch is exactly twice the number of
multiprocessors our GPU contains. For example, a GeForce GTX 280 has 30 multi-
processors, so our histogram kernel happens to run fastest on a GeForce GTX 280
when launched with 60 parallel blocks.

COMPUTING HISTOGRAMS

177

9.4 COMPUTING HISTOGRAMS

In Chapter 3, we discussed a method for querying various properties of the
hardware on which our program is running. We will need to use one of these
device properties if we intend to dynamically size our launch based on our current
hardware platform. To accomplish this, we will use the following code segment.
Although you haven’t yet seen the kernel implementation, you should still be able
to follow what is going on.

 cudaDeviceProp prop;

 HANDLE_ERROR(cudaGetDeviceProperties(&prop, 0));

 int blocks = prop.multiProcessorCount;

 histo_kernel<<<blocks*2,256>>>(dev_buffer, SIZE, dev_histo);

Since our walk-through of main() has been somewhat fragmented, here is the
entire routine from start to finish:

int main(void) {

 unsigned char *buffer =

 (unsigned char*)big_random_block(SIZE);

 cudaEvent_t start, stop;

 HANDLE_ERROR(cudaEventCreate(&start));

 HANDLE_ERROR(cudaEventCreate(&stop));

 HANDLE_ERROR(cudaEventRecord(start, 0));

 // allocate memory on the GPU for the file's data

 unsigned char *dev_buffer;

 unsigned int *dev_histo;

 HANDLE_ERROR(cudaMalloc((void**)&dev_buffer, SIZE));

 HANDLE_ERROR(cudaMemcpy(dev_buffer, buffer, SIZE,

 cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMalloc((void**)&dev_histo,

 256 * sizeof(long)));

 HANDLE_ERROR(cudaMemset(dev_histo, 0,

 256 * sizeof(int)));

AtomIcs

178

 cudaDeviceProp prop;

 HANDLE_ERROR(cudaGetDeviceProperties(&prop, 0));

 int blocks = prop.multiProcessorCount;

 histo_kernel<<<blocks*2,256>>>(dev_buffer, SIZE, dev_histo);

 unsigned int histo[256];

 HANDLE_ERROR(cudaMemcpy(histo, dev_histo,

 256 * sizeof(int),

 cudaMemcpyDeviceToHost));

 // get stop time, and display the timing results

 HANDLE_ERROR(cudaEventRecord(stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(stop));

 float elapsedTime;

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 start, stop));

 printf("Time to generate: %3.1f ms\n", elapsedTime);

 long histoCount = 0;

 for (int i=0; i<256; i++) {

 histoCount += histo[i];

 }

 printf("Histogram Sum: %ld\n", histoCount);

 // verify that we have the same counts via CPU

 for (int i=0; i<SIZE; i++)

 histo[buffer[i]]--;

 for (int i=0; i<256; i++) {

 if (histo[i] != 0)

 printf("Failure at %d!\n", i);

 }

 HANDLE_ERROR(cudaEventDestroy(start));

 HANDLE_ERROR(cudaEventDestroy(stop));

COMPUTING HISTOGRAMS

179

9.4 COMPUTING HISTOGRAMS

 cudaFree(dev_histo);

 cudaFree(dev_buffer);

 free(buffer);

 return 0;

}

HISTOGRAM KERNEL USING GLOBAL MEMORY ATOMICS

And now for the fun part: the GPU code that computes the histogram! The kernel
that computes the histogram itself needs to be given a pointer to the input
data array, the length of the input array, and a pointer to the output histogram.
The first thing our kernel needs to compute is a linearized offset into the input
data array. Each thread will start with an offset between 0 and the number of
threads minus 1. It will then stride by the total number of threads that have been
launched. We hope you remember this technique; we used the same logic to add
vectors of arbitrary length when you first learned about threads.

#include "../common/book.h"

#define SIZE (100*1024*1024)

__global__ void histo_kernel(unsigned char *buffer,

 long size,

 unsigned int *histo) {

 int i = threadIdx.x + blockIdx.x * blockDim.x;

 int stride = blockDim.x * gridDim.x;

Once each thread knows its starting offset i and the stride it should use, the code
walks through the input array incrementing the corresponding histogram bin.

 while (i < size) {

 atomicAdd(&(histo[buffer[i]]), 1);

 i += stride;

 }

}

AtomIcs

180

The highlighted line represents the way we use atomic operations in CUDA C.
The call atomicAdd(addr, y); generates an atomic sequence of opera-
tions that read the value at address addr, adds y to that value, and stores the
result back to the memory address addr. The hardware guarantees us that no
other thread can read or write the value at address addr while we perform these
operations, thus ensuring predictable results. In our example, the address in
question is the location of the histogram bin that corresponds to the current byte.
If the current byte is buffer[i], just like we saw in the CPU version, the corre-
sponding histogram bin is histo[buffer[i]]. The atomic operation needs the
address of this bin, so the first argument is therefore &(histo[buffer[i]]).
Since we simply want to increment the value in that bin by one, the second argu-
ment is 1.

So after all that hullabaloo, our GPU histogram computation is fairly similar to
the corresponding CPU version.

#include "../common/book.h"

#define SIZE (100*1024*1024)

__global__ void histo_kernel(unsigned char *buffer,

 long size,

 unsigned int *histo) {

 int i = threadIdx.x + blockIdx.x * blockDim.x;

 int stride = blockDim.x * gridDim.x;

 while (i < size) {

 atomicAdd(&(histo[buffer[i]]), 1);

 i += stride;

 }

}

However, we need to save the celebrations for later. After running this example,
we discover that a GeForce GTX 285 can construct a histogram from 100MB of
input data in 1.752 seconds. If you read the section on CPU-based histograms,
you will realize that this performance is terrible. In fact, this is more than four
times slower than the CPU version! But this is why we always measure our
baseline performance. It would be a shame to settle for such a low-performance
implementation simply because it runs on the GPU.

COMPUTING HISTOGRAMS

181

9.4 COMPUTING HISTOGRAMS

Since we do very little work in the kernel, it is quite likely that the atomic opera-
tion on global memory is causing the problem. Essentially, when thousands
of threads are trying to access a handful of memory locations, a great deal of
contention for our 256 histogram bins can occur. To ensure atomicity of the incre-
ment operations, the hardware needs to serialize operations to the same memory
location. This can result in a long queue of pending operations, and any perfor-
mance gain we might have had will vanish. We will need to improve the algorithm
itself in order to recover this performance.

HISTOGRAM KERNEL USING SHARED AND GLOBAL MEMORY ATOMICS

Ironically, despite that the atomic operations cause this performance degrada-
tion, alleviating the slowdown actually involves using more atomics, not fewer.
The core problem was not the use of atomics so much as the fact that thousands
of threads were competing for access to a relatively small number of memory
addresses. To address this issue, we will split our histogram computation into two
phases.

In phase one, each parallel block will compute a separate histogram of the data
that its constituent threads examine. Since each block does this independently,
we can compute these histograms in shared memory, saving us the time of
sending each write-off chip to DRAM. Doing this does not free us from needing
atomic operations, though, since multiple threads within the block can still
examine data elements with the same value. However, the fact that only 256
threads will now be competing for 256 addresses will reduce contention from the
global version where thousands of threads were competing.

The first phase then involves allocating and zeroing a shared memory buffer
to hold each block’s intermediate histogram. Recall from Chapter 5 that since
the subsequent step will involve reading and modifying this buffer, we need a
__syncthreads() call to ensure that every thread’s write has completed
before progressing.

__global__ void histo_kernel(unsigned char *buffer,

 long size,

 unsigned int *histo) {

 __shared__ unsigned int temp[256];

 temp[threadIdx.x] = 0;

 __syncthreads();

AtomIcs

182

After zeroing the histogram, the next step is remarkably similar to our original
GPU histogram. The sole differences here are that we use the shared memory
buffer temp[] instead of the global memory buffer histo[] and that we need a
subsequent call to __syncthreads() to ensure the last of our writes have been
committed.

 int i = threadIdx.x + blockIdx.x * blockDim.x;

 int offset = blockDim.x * gridDim.x;

 while (i < size) {

 atomicAdd(&temp[buffer[i]], 1);

 i += offset;

 }

 __syncthreads();

The last step in our modified histogram example requires that we merge each
block’s temporary histogram into the global buffer histo[]. Suppose we split
the input in half and two threads look at different halves and compute separate
histograms. If thread A sees byte 0xFC 20 times in the input and thread B sees
byte 0xFC 5 times, the byte 0xFC must have appeared 25 times in the input.
Likewise, each bin of the final histogram is just the sum of the corresponding
bin in thread A’s histogram and thread B’s histogram. This logic extends to any
number of threads, so merging every block’s histogram into a single final histo-
gram involves adding each entry in the block’s histogram to the corresponding
entry in the final histogram. For all the reasons we’ve seen already, this needs to
be done atomically:

 atomicAdd(&(histo[threadIdx.x]), temp[threadIdx.x]);

}

Since we have decided to use 256 threads and have 256 histogram bins, each
thread atomically adds a single bin to the final histogram’s total. If these numbers
didn’t match, this phase would be more complicated. Note that we have no
guarantees about what order the blocks add their values to the final histogram,
but since integer addition is commutative, we will always get the same answer
provided that the additions occur atomically.

CHAPTER REVIEW

183

9.5 CHAPTER REVIEW

And with this, our two phase histogram computation kernel is complete. Here it is
from start to finish:

__global__ void histo_kernel(unsigned char *buffer,

 long size,

 unsigned int *histo) {

 __shared__ unsigned int temp[256];

 temp[threadIdx.x] = 0;

 __syncthreads();

 int i = threadIdx.x + blockIdx.x * blockDim.x;

 int offset = blockDim.x * gridDim.x;

 while (i < size) {

 atomicAdd(&temp[buffer[i]], 1);

 i += offset;

 }

 __syncthreads();

 atomicAdd(&(histo[threadIdx.x]), temp[threadIdx.x]);

}

This version of our histogram example improves dramatically over the previous
GPU version. Adding the shared memory component drops our running time on
a GeForce GTX 285 to 0.057 seconds. Not only is this significantly better than the
version that used global memory atomics only, but this beats our original CPU
implementation by an order of magnitude (from 0.416 seconds to 0.057 seconds).
This improvement represents greater than a sevenfold boost in speed over the
CPU version. So despite the early setback in adapting the histogram to a GPU
implementation, our version that uses both shared and global atomics should be
considered a success.

Chapter Review9.5
Although we have frequently spoken at length about how easy parallel program-
ming can be with CUDA C, we have largely ignored some of the situations when

AtomIcs

184

massively parallel architectures such as the GPU can make our lives as program-
mers more difficult. Trying to cope with potentially tens of thousands of threads
simultaneously modifying the same memory addresses is a common situation
where a massively parallel machine can seem burdensome. Fortunately, we have
hardware-supported atomic operations available to help ease this pain.

However, as you saw with the histogram computation, sometimes reliance on
atomic operations introduces performance issues that can be resolved only
by rethinking parts of the algorithm. In the histogram example, we moved to a
two-stage algorithm that alleviated contention for global memory addresses. In
general, this strategy of looking to lessen memory contention tends to work well,
and you should keep it in mind when using atomics in your own applications.

185

Chapter 10

Streams

Time and time again in this book we have seen how the massively data-parallel
execution engine on a GPU can provide stunning performance gains over compa-
rable CPU code. However, there is yet another class of parallelism to be exploited
on NVIDIA graphics processors. This parallelism is similar to the task parallelism
that is found in multithreaded CPU applications. Rather than simultaneously
computing the same function on lots of data elements as one does with data
parallelism, task parallelism involves doing two or more completely different
tasks in parallel.

In the context of parallelism, a task could be any number of things. For example,
an application could be executing two tasks: redrawing its GUI with one thread
while downloading an update over the network with another thread. These tasks
proceed in parallel, despite having nothing in common. Although the task paral-
lelism on GPUs is not currently as flexible as a general-purpose processor’s, it
still provides opportunities for us as programmers to extract even more speed
from our GPU-based implementations. In this chapter, we will look at CUDA
streams and the ways in which their careful use will enable us to execute certain
operations simultaneously on the GPU.

streAms

186

Chapter Objectives10.1
Through the course of this chapter, you will accomplish the following:

You will learn about allocating page-locked host memory.•

You will learn what CUDA • streams are.

You will learn how to use CUDA streams to accelerate your applications.•

Page-Locked Host Memory10.2
In every example over the course of nine chapters, you have seen us allocate
memory on the GPU with cudaMalloc(). On the host, we have always allocated
memory with the vanilla, C library routine malloc(). However, the CUDA runtime
offers its own mechanism for allocating host memory: cudaHostAlloc(). Why
would you bother using this function when malloc() has served you quite well
since day one of your life as a C programmer?

In fact, there is a significant difference between the memory that malloc()
will allocate and the memory that cudaHostAlloc() allocates. The C
library function malloc() allocates standard, pageable host memory, while
 cudaHostAlloc() allocates a buffer of page-locked host memory. Sometimes
called pinned memory, page-locked buffers have an important property: The
operating system guarantees us that it will never page this memory out to disk,
which ensures its residency in physical memory. The corollary to this is that it
becomes safe for the OS to allow an application access to the physical address of
the memory, since the buffer will not be evicted or relocated.

Knowing the physical address of a buffer, the GPU can then use direct memory
access (DMA) to copy data to or from the host. Since DMA copies proceed without
intervention from the CPU, it also means that the CPU could be simultaneously
paging these buffers out to disk or relocating their physical address by updating
the operating system’s pagetables. The possibility of the CPU moving pageable
data means that using pinned memory for a DMA copy is essential. In fact, even
when you attempt to perform a memory copy with pageable memory, the CUDA
driver still uses DMA to transfer the buffer to the GPU. Therefore, your copy

PAGE-LOCKED HOST MEMORY

187

10.2 PAGE-LOCKED HOST MEMORY

happens twice, first from a pageable system buffer to a page-locked “staging”
buffer and then from the page-locked system buffer to the GPU.

As a result, whenever you perform memory copies from pageable memory, you
guarantee that the copy speed will be bounded by the lower of the PCIE transfer
speed and the system front-side bus speeds. A large disparity in bandwidth
between these buses in some systems ensures that page-locked host memory
enjoys roughly a twofold performance advantage over standard pageable memory
when used for copying data between the GPU and the host. But even in a world
where PCI Express and front-side bus speeds were identical, pageable buffers
would still incur the overhead of an additional CPU-managed copy.

However, you should resist the temptation to simply do a search-and-replace
on malloc to convert every one of your calls to use cudaHostAlloc(). Using
pinned memory is a double-edged sword. By doing so, you have effectively opted
out of all the nice features of virtual memory. Specifically, the computer running
the application needs to have available physical memory for every page-locked
buffer, since these buffers can never be swapped out to disk. This means that
your system will run out of memory much faster than it would if you stuck to
standard malloc() calls. Not only does this mean that your application might
start to fail on machines with smaller amounts of physical memory, but it means
that your application can affect the performance of other applications running on
the system.

These warnings are not meant to scare you out of using cudaHostAlloc(), but
you should remain aware of the implications of page-locking buffers. We suggest
trying to restrict their use to memory that will be used as a source or destination
in calls to cudaMemcpy() and freeing them when they are no longer needed
rather than waiting until application shutdown to release the memory. The use of
cudaHostAlloc() should be no more difficult than anything else you’ve studied
so far, but let’s take a look at an example that will both illustrate how pinned
memory is allocated and demonstrate its performance advantage over standard
pageable memory.

Our application will be very simple and serves primarily to benchmark
cudaMemcpy() performance with both pageable and page-locked memory.
All we endeavor to do is allocate a GPU buffer and a host buffer of matching
sizes and then execute some number of copies between these two buffers. We’ll
allow the user of this benchmark to specify the direction of the copy, either “up”
(from host to device) or “down” (from device to host). You will also notice that, in
order to obtain accurate timings, we set up CUDA events for the start and stop

streAms

188

of the sequence of copies. You probably remember how to do this from previous
 performance-testing examples, but in case you’ve forgotten, the following will jog
your memory:

float cuda_malloc_test(int size, bool up) {

 cudaEvent_t start, stop;

 int *a, *dev_a;

 float elapsedTime;

 HANDLE_ERROR(cudaEventCreate(&start));

 HANDLE_ERROR(cudaEventCreate(&stop));

 a = (int*)malloc(size * sizeof(*a));

 HANDLE_NULL(a);

 HANDLE_ERROR(cudaMalloc((void**)&dev_a,

 size * sizeof(*dev_a)));

Independent of the direction of the copies, we start by allocating a host and GPU
buffer of size integers. After this, we do 100 copies in the direction specified by
the argument up, stopping the timer after we’ve finished copying.

 HANDLE_ERROR(cudaEventRecord(start, 0));

 for (int i=0; i<100; i++) {

 if (up)

 HANDLE_ERROR(cudaMemcpy(dev_a, a,

 size * sizeof(*dev_a),

 cudaMemcpyHostToDevice));

 else

 HANDLE_ERROR(cudaMemcpy(a, dev_a,

 size * sizeof(*dev_a),

 cudaMemcpyDeviceToHost));

 }

 HANDLE_ERROR(cudaEventRecord(stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(stop));

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 start, stop));

PAGE-LOCKED HOST MEMORY

189

10.2 PAGE-LOCKED HOST MEMORY

After the 100 copies, clean up by freeing the host and GPU buffers as well as
destroying our timing events.

 free(a);

 HANDLE_ERROR(cudaFree(dev_a));

 HANDLE_ERROR(cudaEventDestroy(start));

 HANDLE_ERROR(cudaEventDestroy(stop));

 return elapsedTime;

}

If you didn’t notice, the function cuda_malloc_test() allocated pageable host
memory with the standard C malloc() routine. The pinned memory version
uses cudaHostAlloc() to allocate a page-locked buffer.

float cuda_host_alloc_test(int size, bool up) {

 cudaEvent_t start, stop;

 int *a, *dev_a;

 float elapsedTime;

 HANDLE_ERROR(cudaEventCreate(&start));

 HANDLE_ERROR(cudaEventCreate(&stop));

 HANDLE_ERROR(cudaHostAlloc((void**)&a,

 size * sizeof(*a),

 cudaHostAllocDefault));

 HANDLE_ERROR(cudaMalloc((void**)&dev_a,

 size * sizeof(*dev_a)));

 HANDLE_ERROR(cudaEventRecord(start, 0));

 for (int i=0; i<100; i++) {

 if (up)

 HANDLE_ERROR(cudaMemcpy(dev_a, a,

 size * sizeof(*a),

 cudaMemcpyHostToDevice));

 else

streAms

190

 HANDLE_ERROR(cudaMemcpy(a, dev_a,

 size * sizeof(*a),

 cudaMemcpyDeviceToHost));

 }

 HANDLE_ERROR(cudaEventRecord(stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(stop));

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 start, stop));

 HANDLE_ERROR(cudaFreeHost(a));

 HANDLE_ERROR(cudaFree(dev_a));

 HANDLE_ERROR(cudaEventDestroy(start));

 HANDLE_ERROR(cudaEventDestroy(stop));

 return elapsedTime;

}

As you can see, the buffer allocated by cudaHostAlloc() is used in the same
way as a buffer allocated by malloc(). The other change from using malloc()
lies in the last argument, the value cudaHostAllocDefault. This last argu-
ment stores a collection of flags that we can use to modify the behavior of
 cudaHostAlloc() in order to allocate other varieties of pinned host memory.
In the next chapter, we’ll see how to use the other possible values of these flags,
but for now we’re content to use the default, page-locked memory so we pass
cudaHostAllocDefault in order to get the default behavior. To free a buffer
that was allocated with cudaHostAlloc(), we have to use cudaFreeHost().
That is, every malloc() needs a free(), and every cudaHostAlloc() needs
a cudaFreeHost().

The body of main() proceeds not unlike what you would expect.

#include "../common/book.h"

#define SIZE (10*1024*1024)

int main(void) {

 float elapsedTime;

 float MB = (float)100*SIZE*sizeof(int)/1024/1024;

PAGE-LOCKED HOST MEMORY

191

10.2 PAGE-LOCKED HOST MEMORY

 elapsedTime = cuda_malloc_test(SIZE, true);

 printf("Time using cudaMalloc: %3.1f ms\n",

 elapsedTime);

 printf("\tMB/s during copy up: %3.1f\n",

 MB/(elapsedTime/1000));

Because the up argument to cuda_malloc_test() is true, the previous call
tests the performance of copies from host to device, or “up” to the device. To
benchmark the calls in the opposite direction, we execute the same calls but with
false as the second argument.

 elapsedTime = cuda_malloc_test(SIZE, false);

 printf("Time using cudaMalloc: %3.1f ms\n",

 elapsedTime);

 printf("\tMB/s during copy down: %3.1f\n",

 MB/(elapsedTime/1000));

We perform the same set of steps to test the performance of cudaHostAlloc().
We call cuda_ host_alloc_test() twice, once with up as true and once
with it false.

 elapsedTime = cuda_host_alloc_test(SIZE, true);

 printf("Time using cudaHostAlloc: %3.1f ms\n",

 elapsedTime);

 printf("\tMB/s during copy up: %3.1f\n",

 MB/(elapsedTime/1000));

 elapsedTime = cuda_host_alloc_test(SIZE, false);

 printf("Time using cudaHostAlloc: %3.1f ms\n",

 elapsedTime);

 printf("\tMB/s during copy down: %3.1f\n",

 MB/(elapsedTime/1000));

}

On a GeForce GTX 285, we observed copies from host to device improving from
2.77GB/s to 5.11GB/s when we use pinned memory instead of pageable memory.

streAms

192

Copies from the device down to the host improve similarly, from 2.43GB/s to
5.46GB/s. So, for most PCIE bandwidth-limited applications, you will notice a
marked improvement when using pinned memory versus standard pageable
memory. But page-locked memory is not solely for performance enhancements.
As we’ll see in the next sections, there are situations where we are required to
use page-locked memory.

CUDA Streams10.3
In Chapter 6, we introduced the concept of CUDA events. In doing so, we post-
poned an in-depth discussion of the second argument to cudaEventRecord(),
instead mentioning only that it specified the stream into which we were inserting
the event.

cudaEvent_t start;

cudaEventCreate(&start);

cudaEventRecord(start, 0);

CUDA streams can play an important role in accelerating your applications.
A cudA stream represents a queue of GPU operations that get executed in a
specific order. We can add operations such as kernel launches, memory copies,
and event starts and stops into a stream. The order in which operations are added
to the stream specifies the order in which they will be executed. You can think of
each stream as a task on the GPU, and there are opportunities for these tasks to
execute in parallel. We’ll first see how streams are used, and then we’ll look at
how you can use streams to accelerate your applications.

Using a Single CUDA Stream10.4
As we’ll see later, the real power of streams becomes apparent only when we
use more than one of them, but we’ll begin to illustrate the mechanics of their
use within an application that employs just a single stream. Imagine that we
have a CUDA C kernel that will take two input buffers of data, a and b. The kernel
will compute some result based on a combination of values in these buffers to
produce an output buffer c. Our vector addition example did something along

usInG A sInGle cudA streAm

193

10.4 USING A SINGLE CUDA STREAM

these lines, but in this example we’ll compute an average of three values in a and
three values in b:

#include "../common/book.h"

#define N (1024*1024)

#define FULL_DATA_SIZE (N*20)

__global__ void kernel(int *a, int *b, int *c) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < N) {

 int idx1 = (idx + 1) % 256;

 int idx2 = (idx + 2) % 256;

 float as = (a[idx] + a[idx1] + a[idx2]) / 3.0f;

 float bs = (b[idx] + b[idx1] + b[idx2]) / 3.0f;

 c[idx] = (as + bs) / 2;

 }

}

This kernel is not incredibly important, so don’t get too hung up on it if you
aren’t sure exactly what it’s supposed to be computing. It’s something of a
placeholder since the important, stream-related component of this example
resides in main().

int main(void) {

 cudaDeviceProp prop;

 int whichDevice;

 HANDLE_ERROR(cudaGetDevice(&whichDevice));

 HANDLE_ERROR(cudaGetDeviceProperties(&prop, whichDevice));

 if (!prop.deviceOverlap) {

 printf("Device will not handle overlaps, so no "

 "speed up from streams\n");

 return 0;

 }

streAms

194

The first thing we do is choose a device and check to see whether it supports a
feature known as device overlap. A GPU supporting device overlap possesses the
capacity to simultaneously execute a CUDA C kernel while performing a copy
between device and host memory. As we’ve promised before, we’ll use multiple
streams to achieve this overlap of computation and data transfer, but first we’ll
see how to create and use a single stream. As with all of our examples that aim to
measure performance improvements (or regressions), we begin by creating and
starting an event timer:

 cudaEvent_t start, stop;

 float elapsedTime;

 // start the timers

 HANDLE_ERROR(cudaEventCreate(&start));

 HANDLE_ERROR(cudaEventCreate(&stop));

 HANDLE_ERROR(cudaEventRecord(start, 0));

After starting our timer, we create the stream we want to use for this application:

 // initialize the stream

 cudaStream_t stream;

 HANDLE_ERROR(cudaStreamCreate(&stream));

Yeah, that’s pretty much all it takes to create a stream. It’s not really worth
dwelling on, so let’s press on to the data allocation.

 int *host_a, *host_b, *host_c;

 int *dev_a, *dev_b, *dev_c;

 // allocate the memory on the GPU

 HANDLE_ERROR(cudaMalloc((void**)&dev_a,

 N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_b,

 N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_c,

 N * sizeof(int)));

usInG A sInGle cudA streAm

195

10.4 USING A SINGLE CUDA STREAM

 // allocate page-locked memory, used to stream

 HANDLE_ERROR(cudaHostAlloc((void**)&host_a,

 FULL_DATA_SIZE * sizeof(int),

 cudaHostAllocDefault));

 HANDLE_ERROR(cudaHostAlloc((void**)&host_b,

 FULL_DATA_SIZE * sizeof(int),

 cudaHostAllocDefault));

 HANDLE_ERROR(cudaHostAlloc((void**)&host_c,

 FULL_DATA_SIZE * sizeof(int),

 cudaHostAllocDefault));

 for (int i=0; i<FULL_DATA_SIZE; i++) {

 host_a[i] = rand();

 host_b[i] = rand();

 }

We have allocated our input and output buffers on both the GPU and the
host. Notice that we’ve decided to use pinned memory on the host by using
 cudaHostAlloc() to perform the allocations. There is a very good reason for
using pinned memory, and it’s not strictly because it makes copies faster. We’ll
see in detail momentarily, but we will be using a new kind of cudaMemcpy()
function, and this new function requires that the host memory be page-locked.
After allocating the input buffers, we fill the host allocations with random integers
using the C library call rand().

With our stream and our timing events created and our device and host buffers
allocated, we’re ready to perform some computations! Typically we blast through
this stage by copying the two input buffers to the GPU, launching our kernel, and
copying the output buffer back to the host. We will follow this pattern again, but
this time with some small changes.

First, we will opt not to copy the input buffers in their entirety to the GPU. Rather,
we will split our inputs into smaller chunks and perform the three-step process
on each chunk. That is, we will take some fraction of the input buffers, copy
them to the GPU, execute our kernel on that fraction of the buffers, and copy the
resulting fraction of the output buffer back to the host. Imagine that we need

streAms

196

to do this because our GPU has much less memory than our host does, so the
computation needs to be staged in chunks because the entire buffer can’t fit on
the GPU at once. The code to perform this “chunkified” sequence of computations
will look like this:

 // now loop over full data, in bite-sized chunks

 for (int i=0; i<FULL_DATA_SIZE; i+= N) {

 // copy the locked memory to the device, async

 HANDLE_ERROR(cudaMemcpyAsync(dev_a, host_a+i,

 N * sizeof(int),

 cudaMemcpyHostToDevice,

 stream));

 HANDLE_ERROR(cudaMemcpyAsync(dev_b, host_b+i,

 N * sizeof(int),

 cudaMemcpyHostToDevice,

 stream));

 kernel<<<N/256,256,0,stream>>>(dev_a, dev_b, dev_c);

 // copy the data from device to locked memory

 HANDLE_ERROR(cudaMemcpyAsync(host_c+i, dev_c,

 N * sizeof(int),

 cudaMemcpyDeviceToHost,

 stream));

 }

But you will notice two other unexpected shifts from the norm in the preceding
excerpt. First, instead of using the familiar cudaMemcpy(), we’re copying
the data to and from the GPU with a new routine, cudaMemcpyAsync().
The difference between these functions is subtle yet significant. The original
cudaMemcpy() behaves like the C library function memcpy(). Specifically, this
function executes synchronously, meaning that when the function returns, the
copy has completed, and the output buffer now contains the contents that were
supposed to be copied into it.

usInG A sInGle cudA streAm

197

10.4 USING A SINGLE CUDA STREAM

The opposite of a synchronous function is an asynchronous function, which
inspired the name cudaMemcpyAsync(). The call to cudaMemcpyAsync()
simply places a request to perform a memory copy into the stream specified by
the argument stream. When the call returns, there is no guarantee that the
copy has even started yet, much less that it has finished. The guarantee that
we have is that the copy will definitely be performed before the next opera-
tion placed into the same stream. It is required that any host memory pointers
passed to cudaMemcpyAsync() have been allocated by cudaHostAlloc().
That is, you are only allowed to schedule asynchronous copies to or from page-
locked memory.

Notice that the angle-bracketed kernel launch also takes an optional stream
argument. This kernel launch is asynchronous, just like the preceding two
memory copies to the GPU and the trailing memory copy back from the GPU.
Technically, we can end an iteration of this loop without having actually started
any of the memory copies or kernel execution. As we mentioned, all that we are
guaranteed is that the first copy placed into the stream will execute before the
second copy. Moreover, the second copy will complete before the kernel starts,
and the kernel will complete before the third copy starts. So as we’ve mentioned
earlier in this chapter, a stream acts just like an ordered queue of work for the
GPU to perform.

When the for() loop has terminated, there could still be quite a bit of work
queued up for the GPU to finish. If we would like to guarantee that the GPU
is done with its computations and memory copies, we need to synchronize
it with the host. That is, we basically want to tell the host to sit around and
wait for the GPU to finish before proceeding. We accomplish that by calling
 cudaStreamSynchronize() and specifying the stream that we want to wait for:

 // copy result chunk from locked to full buffer

 HANDLE_ERROR(cudaStreamSynchronize(stream));

Since the computations and copies have completed after synchronizing stream
with the host, we can stop our timer, collect our performance data, and free our
input and output buffers.

streAms

198

 HANDLE_ERROR(cudaEventRecord(stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(stop));

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 start, stop));

 printf("Time taken: %3.1f ms\n", elapsedTime);

 // cleanup the streams and memory

 HANDLE_ERROR(cudaFreeHost(host_a));

 HANDLE_ERROR(cudaFreeHost(host_b));

 HANDLE_ERROR(cudaFreeHost(host_c));

 HANDLE_ERROR(cudaFree(dev_a));

 HANDLE_ERROR(cudaFree(dev_b));

 HANDLE_ERROR(cudaFree(dev_c));

Finally, before exiting the application, we destroy the stream that we were using
to queue the GPU operations.

 HANDLE_ERROR(cudaStreamDestroy(stream));

 return 0;

}

To be honest, this example has done very little to demonstrate the power of
streams. Of course, even using a single stream can help speed up an application
if we have work we want to complete on the host while the GPU is busy churning
through the work we’ve stuffed into a stream. But assuming that we don’t have
much to do on the host, we can still speed up applications by using streams, and
in the next section we’ll take a look at how this can be accomplished.

Using Multiple CUDA Streams10.5
Let’s adapt the single-stream example from Section 10.3: Using a Single CUDA
Stream to perform its work in two different streams. At the beginning of the
previous example, we checked that the device indeed supported overlap and

usInG multIPle cudA streAms

199

10.5 USING MULTIPLE CUDA STREAMS

broke the computation into chunks. The idea underlying the improved version
of this application is simple and relies on two things: the “chunked” computa-
tion and the overlap of memory copies with kernel execution. We endeavor to
get stream 1 to copy its input buffers to the GPU while stream 0 is executing its
kernel. Then stream 1 will execute its kernel while stream 0 copies its results
to the host. Stream 1 will then copy its results to the host while stream 0 begins
executing its kernel on the next chunk of data. Assuming that our memory copies
and kernel executions take roughly the same amount of time, our application’s
execution timeline might look something like Figure 10.1. The figure assumes
that the GPU can perform a memory copy and a kernel execution at the same
time, so empty boxes represent time when one stream is waiting to execute an
operation that it cannot overlap with the other stream’s operation. Note also that
calls to cudaMemcpyAsync() are abbreviated in the remaining figures in this
chapter, represented simply as “memcpy.”

Stream 1

kernel

kernel

memcpy A to GPU

memcpy A to GPU

memcpy B to GPU

memcpy B to GPU

memcpy C from GPU

memcpy C from GPU

Stream 0

Ti
m

e

kernel

memcpy A to GPU

memcpy B to GPU

memcpy C from GPU kernel

memcpy A to GPU

memcpy B to GPU

memcpy C from GPU

Figure 10.1 Timeline of intended application execution using two
independent streams

streAms

200

In fact, the execution timeline can be even more favorable than this; some newer
NVIDIA GPUs support simultaneous kernel execution and two memory copies,
one to the device and one from the device. But on any device that supports the
overlap of memory copies and kernel execution, the overall application should
accelerate when we use multiple streams.

Despite these grand plans to accelerate our application, the computation kernel
will remain unchanged.

#include "../common/book.h"

#define N (1024*1024)

#define FULL_DATA_SIZE (N*20)

__global__ void kernel(int *a, int *b, int *c) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < N) {

 int idx1 = (idx + 1) % 256;

 int idx2 = (idx + 2) % 256;

 float as = (a[idx] + a[idx1] + a[idx2]) / 3.0f;

 float bs = (b[idx] + b[idx1] + b[idx2]) / 3.0f;

 c[idx] = (as + bs) / 2

 }

}

As with the single stream version, we will check that the device supports over-
lapping computation with memory copy. If the device does support overlap, we
proceed as we did before by creating CUDA events to time the application.

int main(void) {

 cudaDeviceProp prop;

 int whichDevice;

 HANDLE_ERROR(cudaGetDevice(&whichDevice));

 HANDLE_ERROR(cudaGetDeviceProperties(&prop, whichDevice));

usInG multIPle cudA streAms

201

10.5 USING MULTIPLE CUDA STREAMS

 if (!prop.deviceOverlap) {

 printf(“Device will not handle overlaps, so no “

 “speed up from streams\n”);

 return 0;

 }

 cudaEvent_t start, stop;

 float elapsedTime;

 // start the timers

 HANDLE_ERROR(cudaEventCreate(&start));

 HANDLE_ERROR(cudaEventCreate(&stop));

 HANDLE_ERROR(cudaEventRecord(start, 0));

Next, we create our two streams exactly as we created the single stream in the
previous section’s version of the code.

 // initialize the streams

 cudaStream_t stream0, stream1;

 HANDLE_ERROR(cudaStreamCreate(&stream0));

 HANDLE_ERROR(cudaStreamCreate(&stream1));

We will assume that we still have two input buffers and a single output buffer on
the host. The input buffers are filled with random data exactly as they were in the
single-stream version of this application. However, now that we intend to use two
streams to process the data, we allocate two identical sets of GPU buffers so that
each stream can independently work on chunks of the input.

 int *host_a, *host_b, *host_c;

 int *dev_a0, *dev_b0, *dev_c0; //GPU buffers for stream0

 int *dev_a1, *dev_b1, *dev_c1; //GPU buffers for stream1

 // allocate the memory on the GPU

 HANDLE_ERROR(cudaMalloc((void**)&dev_a0,

 N * sizeof(int)));

streAms

202

 HANDLE_ERROR(cudaMalloc((void**)&dev_b0,

 N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_c0,

 N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_a1,

 N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_b1,

 N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_c1,

 N * sizeof(int)));

 // allocate page-locked memory, used to stream

 HANDLE_ERROR(cudaHostAlloc((void**)&host_a,

 FULL_DATA_SIZE * sizeof(int),

 cudaHostAllocDefault));

 HANDLE_ERROR(cudaHostAlloc((void**)&host_b,

 FULL_DATA_SIZE * sizeof(int),

 cudaHostAllocDefault));

 HANDLE_ERROR(cudaHostAlloc((void**)&host_c,

 FULL_DATA_SIZE * sizeof(int),

 cudaHostAllocDefault));

 for (int i=0; i<FULL_DATA_SIZE; i++) {

 host_a[i] = rand();

 host_b[i] = rand();

 }

We then loop over the chunks of input exactly as we did in the first attempt at this
application. But now that we’re using two streams, we process twice as much
data in each iteration of the for() loop. In stream0, we queue asynchronous
copies of a and b to the GPU, queue a kernel execution, and then queue a copy
back to c:

usInG multIPle cudA streAms

203

10.5 USING MULTIPLE CUDA STREAMS

 // now loop over full data, in bite-sized chunks

 for (int i=0; i<FULL_DATA_SIZE; i+= N*2) {

 // copy the locked memory to the device, async

 HANDLE_ERROR(cudaMemcpyAsync(dev_a0, host_a+i,

 N * sizeof(int),

 cudaMemcpyHostToDevice,

 stream0));

 HANDLE_ERROR(cudaMemcpyAsync(dev_b0, host_b+i,

 N * sizeof(int),

 cudaMemcpyHostToDevice,

 stream0));

 kernel<<<N/256,256,0,stream0>>>(dev_a0, dev_b0, dev_c0);

 // copy the data from device to locked memory

 HANDLE_ERROR(cudaMemcpyAsync(host_c+i, dev_c0,

 N * sizeof(int),

 cudaMemcpyDeviceToHost,

 stream0));

After queuing these operations in stream0, we queue identical operations on the
next chunk of data, but this time in stream1.

 // copy the locked memory to the device, async

 HANDLE_ERROR(cudaMemcpyAsync(dev_a1, host_a+i+N,

 N * sizeof(int),

 cudaMemcpyHostToDevice,

 stream1));

 HANDLE_ERROR(cudaMemcpyAsync(dev_b1, host_b+i+N,

 N * sizeof(int),

 cudaMemcpyHostToDevice,

 stream1));

streAms

204

 kernel<<<N/256,256,0,stream1>>>(dev_a1, dev_b1, dev_c1);

 // copy the data from device to locked memory

 HANDLE_ERROR(cudaMemcpyAsync(host_c+i+N, dev_c1,

 N * sizeof(int),

 cudaMemcpyDeviceToHost,

 stream1));

 }

And so our for() loop proceeds, alternating the streams to which it queues
each chunk of data until it has queued every piece of input data for processing.
After terminating the for() loop, we synchronize the GPU with the CPU before
we stop our application timers. Since we are working in two streams, we need to
synchronize both.

 HANDLE_ERROR(cudaStreamSynchronize(stream0));

 HANDLE_ERROR(cudaStreamSynchronize(stream1));

We wrap up main() the same way we concluded our single-stream implementa-
tion. We stop our timers, display the elapsed time, and clean up after ourselves.
Of course, we remember that we now need to destroy two streams and free twice
as many GPU buffers, but aside from that, this code is identical to what we’ve
seen already:

 HANDLE_ERROR(cudaEventRecord(stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(stop));

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 start, stop));

 printf("Time taken: %3.1f ms\n", elapsedTime);

 // cleanup the streams and memory

 HANDLE_ERROR(cudaFreeHost(host_a));

 HANDLE_ERROR(cudaFreeHost(host_b));

 HANDLE_ERROR(cudaFreeHost(host_c));

GPU WORK SCHEDULING

205

10.6 GPU WORK SCHEDULING

 HANDLE_ERROR(cudaFree(dev_a0));

 HANDLE_ERROR(cudaFree(dev_b0));

 HANDLE_ERROR(cudaFree(dev_c0));

 HANDLE_ERROR(cudaFree(dev_a1));

 HANDLE_ERROR(cudaFree(dev_b1));

 HANDLE_ERROR(cudaFree(dev_c1));

 HANDLE_ERROR(cudaStreamDestroy(stream0));

 HANDLE_ERROR(cudaStreamDestroy(stream1));

 return 0;

}

We benchmarked both the original, single-stream implementation from
Section 10.3: Using a Single CUDA Stream and the improved double-stream
version on a GeForce GTX 285. The original version takes 62ms to run to comple-
tion. After modifying it to use two streams, it takes 61ms.

Uh-oh.

Well, the good news is that this is the reason we bother to time our applications.
Sometimes, our most well-intended performance “enhancements” do nothing
more than introduce unnecessary complications to the code.

But why didn’t this application get any faster? We even said that it would get
faster! Don’t lose hope yet, though, because we actually can accelerate the single-
stream version with a second stream, but we need to understand a bit more about
how streams are handled by the CUDA driver in order to reap the rewards of
device overlap. To understand how streams work behind the scenes, we’ll need to
look at both the CUDA driver and how the CUDA hardware architecture works.

GPU Work Scheduling10.6
Although streams are logically independent queues of operations to be executed
on the GPU, it turns out that this abstraction does not exactly match the GPU’s
queuing mechanism. As programmers, we think about our streams as ordered
sequences of operations composed of a mixture of memory copies and kernel

streAms

206

invocations. However, the hardware has no notion of streams. Rather, it has one
or more engines to perform memory copies and an engine to execute kernels.
These engines queue commands independently from each other, resulting in a
task-scheduling scenario like the one shown in Figure 10.2. The arrows in the
figure illustrate how operations that have been queued into streams get sched-
uled on the hardware engines that actually execute them.

So, the user and the hardware have somewhat orthogonal notions of how to
queue GPU work, and the burden of keeping both the user and hardware sides
of this equation happy falls on the CUDA driver. First and foremost, there are
important dependencies specified by the order in which operations are added
to streams. For example, in Figure 10.2, stream 0’s memory copy of A needs to
be completed before its memory copy of B, which in turn needs to be completed
before kernel A is launched. But once these operations are placed into the hard-
ware’s copy engine and kernel engine queues, these dependencies are lost, so
the CUDA driver needs to keep everyone happy by ensuring that the intrastream
dependencies remain satisfied by the hardware’s execution units.

Stream 0

memcpy A

memcpy B

kernel A

memcpy C

memcpy A

memcpy B

kernel A

memcpy C

memcpy A

memcpy B

memcpy C

memcpy A

memcpy B

memcpy C

kernel A

kernel A

Stream 1

Copy Engine

Kernel Engine

Figure 10.2 Mapping of CUDA streams onto GPU engines

GPU WORK SCHEDULING

207

10.6 GPU WORK SCHEDULING

What does this mean to us? Well, let’s look at what’s actually happening with
our example in Section 10.4: Using Multiple CUDA Streams. If we review the
code, we see that our application basically amounts to a cudaMemcpyAsync()
of a, cudaMemcpyAsync() of b, our kernel execution, and then a
 cudaMemcpyAsync() of c back to the host. The application enqueues all the
operations from stream 0 followed by all the operations from stream 1. The CUDA
driver schedules these operations on the hardware for us in the order they were
specified, keeping the interengine dependencies straight. These dependencies
are illustrated in Figure 10.3 where an arrow from a copy to a kernel indicates
that the copy depends on the kernel completing execution before it can begin.

Given our newfound understanding of how the GPU schedules work, we can look
at a timeline of how these get executed on the hardware in Figure 10.4.

Because stream 0’s copy of c back to the host depends on its kernel execution
completing, stream 1’s completely independent copies of a and b to the GPU get
blocked because the GPU’s engines execute work in the order it’s provided. This
inefficiency explains why the two-stream version of our application showed abso-
lutely no speedup. The lack of improvement is a direct result of our assumption
that the hardware works in the same manner as the CUDA stream programming
model implies.

Kernel Engine

Stream 0: kernel

Stream 1: kernel

Stream 0: memcpy A

Stream 0: memcpy B

Stream 0: memcpy C

Stream 0: memcpy A

Stream 0: memcpy B

Stream 0: memcpy C

Copy Engine

Figure 10.3 Arrows depicting the dependency of cudaMemcpyAsync() calls
on kernel executions in the example from Section 10.4: Using Multiple CUDA
Streams

streAms

208

Kernel Engine

Stream 0: kernel

Stream 1: kernel

Stream 0: memcpy A

Stream 0: memcpy B

Stream 0: memcpy C

Stream 1: memcpy A

Stream 1: memcpy B

Stream 1: memcpy C

Copy Engine
Ti

m
e

Figure 10.4 Execution timeline of the example from Section 10.4: Using Multiple
CUDA Streams

The moral of this story is that we as programmers need to help out when it
comes to ensuring that independent streams actually get executed in parallel.
Keeping in mind that the hardware has independent engines that handle memory
copies and kernel executions, we need to remain aware that the order in which
we enqueue these operations in our streams will affect the way in which the
CUDA driver schedules these for execution. In the next section, we’ll see how to
help the hardware achieve overlap of memory copies and kernel execution.

Using Multiple CUDA Streams 10.7
Effectively
As we saw in the previous section, if we schedule all of a particular stream’s
operations at once, it’s very easy to inadvertently block the copies or kernel
executions of another stream. To alleviate this problem, it suffices to enqueue our
operations breadth-first across streams rather than depth-first. That is, rather
than add the copy of a, copy of b, kernel execution, and copy of c to stream 0
before starting to schedule on stream 1, we bounce back and forth between the

USING MULTIPLE CUDA STREAMS EFFECTIVELY

209

10.7 USING MULTIPLE CUDA STREAMS EFFECTIVELY

streams assigning work. We add the copy of a to stream 0, and then we add the
copy of a to stream 1. Then we add the copy of b to stream 0, and then we add the
copy of b to stream 1. We enqueue the kernel invocation in stream 0, and then we
enqueue one in stream 1. Finally, we enqueue the copy of c back to the host in
stream 0 followed by the copy of c in stream 1.

To make this more concrete, let’s take a look at the code. All we’ve changed is
the order in which operations get assigned to each of our two streams, so this
will be strictly a copy-and-paste optimization. Everything else in the application
will remain unchanged, which means that our improvements are localized to the
for() loop. The new, breadth-first assignment to the two streams looks like this:

 for (int i=0; i<FULL_DATA_SIZE; i+= N*2) {

 // enqueue copies of a in stream0 and stream1

 HANDLE_ERROR(cudaMemcpyAsync(dev_a0, host_a+i,

 N * sizeof(int),

 cudaMemcpyHostToDevice,

 stream0));

 HANDLE_ERROR(cudaMemcpyAsync(dev_a1, host_a+i+N,

 N * sizeof(int),

 cudaMemcpyHostToDevice,

 stream1));

 // enqueue copies of b in stream0 and stream1

 HANDLE_ERROR(cudaMemcpyAsync(dev_b0, host_b+i,

 N * sizeof(int),

 cudaMemcpyHostToDevice,

 stream0));

 HANDLE_ERROR(cudaMemcpyAsync(dev_b1, host_b+i+N,

 N * sizeof(int),

 cudaMemcpyHostToDevice,

 stream1));

 // enqueue kernels in stream0 and stream1

 kernel<<<N/256,256,0,stream0>>>(dev_a0, dev_b0, dev_c0);

 kernel<<<N/256,256,0,stream1>>>(dev_a1, dev_b1, dev_c1);

streAms

210

 // enqueue copies of c from device to locked memory

 HANDLE_ERROR(cudaMemcpyAsync(host_c+i, dev_c0,

 N * sizeof(int),

 cudaMemcpyDeviceToHost,

 stream0));

 HANDLE_ERROR(cudaMemcpyAsync(host_c+i+N, dev_c1,

 N * sizeof(int),

 cudaMemcpyDeviceToHost,

 stream1));

 }

If we assume that our memory copies and kernel executions are roughly compa-
rable in execution time, our new execution timeline will look like Figure 10.5. The
interengine dependencies are highlighted with arrows simply to illustrate that
they are still satisfied with this new scheduling order.

Because we have queued our operations breadth-first across streams, we no
longer have stream 0’s copy of c blocking stream 1’s initial memory copies of a
and b. This allows the GPU to execute copies and kernels in parallel, allowing our
application to run significantly faster. The new code runs in 48ms, a 21 percent
improvement over our original, naïve double-stream implementation. For appli-
cations that can overlap nearly all computation and memory copies, you can
approach a nearly twofold improvement in performance because the copy and
kernel engines will be cranking the entire time.

Kernel Engine

Stream 0: kernel

Stream 1: kernel

Stream 0: memcpy A

Stream 0: memcpy C

Stream 1: memcpy A

Stream 1: memcpy B

Stream 1: memcpy C

Copy Engine

Ti
m

e

Stream 0: memcpy B

Figure 10.5 Execution timeline of the improved example with arrows indicating
interengine dependencies

CHAPTER REVIEW

211

10.8 CHAPTER REVIEW

Chapter Review10.8
In this chapter, we looked at a method for achieving a kind of task-level paral-
lelism in CUDA C applications. By using two (or more) CUDA streams, we can
allow the GPU to simultaneously execute a kernel while performing a copy
between the host and GPU. We need to be careful about two things when we
endeavor to do this, though. First, the host memory involved needs to be allo-
cated using cudaHostAlloc() since we will queue our memory copies with
cudaMemcpyAsync(), and asynchronous copies need to be performed with
pinned buffers. Second, we need to be aware that the order in which we add oper-
ations to our streams will affect our capacity to achieve overlapping of copies and
kernel executions. The general guideline involves a breadth-first, or round-robin,
assignment of work to the streams you intend to use. This can be counterintuitive
if you don’t understand how the hardware queuing works, so it’s a good thing to
remember when you go about writing your own applications.

This page intentionally left blank

213

Chapter 11

CUDA C on
 Multiple GPUs

There is an old saying that goes something like this: “The only thing better than
computing on a GPU is computing on two GPUs.” Systems containing multiple
graphics processors have become more and more common in recent years. Of
course, in some ways multi-GPU systems are similar to multi-CPU systems in
that they are still far from the common system configuration, but it has gotten
quite easy to end up with more than one GPU in your system. Products such as
the GeForce GTX 295 contain two GPUs on a single card. NVIDIA’s Tesla S1070
contains a whopping four CUDA-capable graphics processors in it. Systems built
around a recent NVIDIA chipset will have an integrated, CUDA-capable GPU on
the motherboard. Adding a discrete NVIDIA GPU in one of the PCI Express slots
will make this system multi-GPU. Neither of these scenarios is very farfetched,
so we would be best served by learning to exploit the resources of a system with
multiple GPUs in it.

cudA c on multIPle GPus

214

Chapter Objectives11.1
Through the course of this chapter, you will accomplish the following:

You will learn how to allocate and use • zero-copy memory.

You will learn how to use multiple GPUs within the same application.•

You will learn how to allocate and use • portable pinned memory.

Zero-Copy Host Memory11.2
In Chapter 10, we examined pinned or page-locked memory, a new type of
host memory that came with the guarantee that the buffer would never be
swapped out of physical memory. If you recall, we allocated this memory by
making a call to cudaHostAlloc() and passing cudaHostAllocDefault
to get default, pinned memory. We promised that in the next chapter, you would
see other more exciting means by which you can allocate pinned memory.
Assuming that this is the only reason you’ve continued reading, you will be
glad to know that the wait is over. The flag cudaHostAllocMapped can be
passed instead of cudaHostAllocDefault. The host memory allocated using
 cudaHostAllocMapped is pinned in the same sense that memory allocated
with cudaHostAllocDefault is pinned, specifically that it cannot be paged out
of or relocated within physical memory. But in addition to using this memory from
the host for memory copies to and from the GPU, this new kind of host memory
allows us to violate one of the first rules we presented in Chapter 3 concerning
host memory: We can access this host memory directly from within CUDA C
kernels. Because this memory does not require copies to and from the GPU, we
refer to it as zero-copy memory.

ZERO-COPY DOT PRODUCT11.2.1

Typically, our GPU accesses only GPU memory, and our CPU accesses only host
memory. But in some circumstances, it’s better to break these rules. To see an
instance where it’s better to have the GPU manipulate host memory, we’ll revisit
our favorite reduction: the vector dot product. If you’ve managed to read this
entire book, you may recall our first attempt at the dot product. We copied the two
input vectors to the GPU, performed the computation, copied the intermediate
results back to the host, and completed the computation on the CPU.

ZERO-COPY HOST MEMORY

215

11.2 ZERO-COPY HOST MEMORY

In this version, we’ll skip the explicit copies of our input up to the GPU and instead
use zero-copy memory to access the data directly from the GPU. This version of
dot product will be set up exactly like our pinned memory test. Specifically, we’ll
write two functions; one will perform the test with standard host memory, and
the other will finish the reduction on the GPU using zero-copy memory to hold
the input and output buffers. First let’s take a look at the standard host memory
version of the dot product. We start in the usual fashion by creating timing events,
allocating input and output buffers, and filling our input buffers with data.

float malloc_test(int size) {

 cudaEvent_t start, stop;

 float *a, *b, c, *partial_c;

 float *dev_a, *dev_b, *dev_partial_c;

 float elapsedTime;

 HANDLE_ERROR(cudaEventCreate(&start));

 HANDLE_ERROR(cudaEventCreate(&stop));

 // allocate memory on the CPU side

 a = (float*)malloc(size*sizeof(float));

 b = (float*)malloc(size*sizeof(float));

 partial_c = (float*)malloc(blocksPerGrid*sizeof(float));

 // allocate the memory on the GPU

 HANDLE_ERROR(cudaMalloc((void**)&dev_a,

 size*sizeof(float)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_b,

 size*sizeof(float)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_partial_c,

 blocksPerGrid*sizeof(float)));

 // fill in the host memory with data

 for (int i=0; i<size; i++) {

 a[i] = i;

 b[i] = i*2;

 }

cudA c on multIPle GPus

216

After the allocations and data creation, we can begin the computations. We start
our timer, copy our inputs to the GPU, execute the dot product kernel, and copy
the partial results back to the host.

 HANDLE_ERROR(cudaEventRecord(start, 0));

 // copy the arrays 'a' and 'b' to the GPU

 HANDLE_ERROR(cudaMemcpy(dev_a, a, size*sizeof(float),

 cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMemcpy(dev_b, b, size*sizeof(float),

 cudaMemcpyHostToDevice));

 dot<<<blocksPerGrid,threadsPerBlock>>>(size, dev_a, dev_b,

 dev_partial_c);

 // copy the array 'c' back from the GPU to the CPU

 HANDLE_ERROR(cudaMemcpy(partial_c, dev_partial_c,

 blocksPerGrid*sizeof(float),

 cudaMemcpyDeviceToHost));

Now we need to finish up our computations on the CPU as we did in Chapter 5.
Before doing this, we’ll stop our event timer because it only measures work that’s
being performed on the GPU:

 HANDLE_ERROR(cudaEventRecord(stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(stop));

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 start, stop));

Finally, we sum our partial results and free our input and output buffers.

 // finish up on the CPU side

 c = 0;

 for (int i=0; i<blocksPerGrid; i++) {

 c += partial_c[i];

 }

ZERO-COPY HOST MEMORY

217

11.2 ZERO-COPY HOST MEMORY

 HANDLE_ERROR(cudaFree(dev_a));

 HANDLE_ERROR(cudaFree(dev_b));

 HANDLE_ERROR(cudaFree(dev_partial_c));

 // free memory on the CPU side

 free(a);

 free(b);

 free(partial_c);

 // free events

 HANDLE_ERROR(cudaEventDestroy(start));

 HANDLE_ERROR(cudaEventDestroy(stop));

 printf("Value calculated: %f\n", c);

 return elapsedTime;

}

The version that uses zero-copy memory will be remarkably similar, with the
exception of memory allocation. So, we start by allocating our input and output,
filling the input memory with data as before:

float cuda_host_alloc_test(int size) {

 cudaEvent_t start, stop;

 float *a, *b, c, *partial_c;

 float *dev_a, *dev_b, *dev_partial_c;

 float elapsedTime;

 HANDLE_ERROR(cudaEventCreate(&start));

 HANDLE_ERROR(cudaEventCreate(&stop));

 // allocate the memory on the CPU

 HANDLE_ERROR(cudaHostAlloc((void**)&a,

 size*sizeof(float),

 cudaHostAllocWriteCombined |

 cudaHostAllocMapped));

cudA c on multIPle GPus

218

 HANDLE_ERROR(cudaHostAlloc((void**)&b,

 size*sizeof(float),

 cudaHostAllocWriteCombined |

 cudaHostAllocMapped));

 HANDLE_ERROR(cudaHostAlloc((void**)&partial_c,

 blocksPerGrid*sizeof(float),

 cudaHostAllocMapped));

 // fill in the host memory with data

 for (int i=0; i<size; i++) {

 a[i] = i;

 b[i] = i*2;

 }

As with Chapter 10, we see cudaHostAlloc() in action again, although we’re
now using the flags argument to specify more than just default behavior. The
flag cudaHostAllocMapped tells the runtime that we intend to access this
buffer from the GPU. In other words, this flag is what makes our buffer zero-copy.
For the two input buffers, we specify the flag cudaHostAllocWriteCombined.
This flag indicates that the runtime should allocate the buffer as write-combined
with respect to the CPU cache. This flag will not change functionality in our appli-
cation but represents an important performance enhancement for buffers that
will be read only by the GPU. However, write-combined memory can be extremely
inefficient in scenarios where the CPU also needs to perform reads from the
buffer, so you will have to consider your application’s likely access patterns when
making this decision.

Since we’ve allocated our host memory with the flag cudaHostAllocMapped,
the buffers can be accessed from the GPU. However, the GPU has a different
virtual memory space than the CPU, so the buffers will have different addresses
when they’re accessed on the GPU as compared to the CPU. The call to
 cudaHostAlloc() returns the CPU pointer for the memory, so we need to call
cudaHostGetDevicePointer() in order to get a valid GPU pointer for the
memory. These pointers will be passed to the kernel and then used by the GPU to
read from and write to our host allocations:

ZERO-COPY HOST MEMORY

219

11.2 ZERO-COPY HOST MEMORY

 HANDLE_ERROR(cudaHostGetDevicePointer(&dev_a, a, 0));

 HANDLE_ERROR(cudaHostGetDevicePointer(&dev_b, b, 0));

 HANDLE_ERROR(cudaHostGetDevicePointer(&dev_partial_c,

 partial_c, 0));

With valid device pointers in hand, we’re ready to start our timer and launch our
kernel.

 HANDLE_ERROR(cudaEventRecord(start, 0));

 dot<<<blocksPerGrid,threadsPerBlock>>>(size, dev_a, dev_b,

 dev_partial_c);

 HANDLE_ERROR(cudaThreadSynchronize());

Even though the pointers dev_a, dev_b, and dev_partial_c all reside on
the host, they will look to our kernel as if they are GPU memory, thanks to our
calls to cudaHostGetDevicePointer(). Since our partial results are already
on the host, we don’t need to bother with a cudaMemcpy() from the device.
However, you will notice that we’re synchronizing the CPU with the GPU by calling
 cudaThreadSynchronize(). The contents of zero-copy memory are undefined
during the execution of a kernel that potentially makes changes to its contents.
After synchronizing, we’re sure that the kernel has completed and that our zero-
copy buffer contains the results so we can stop our timer and finish the computa-
tion on the CPU as we did before.

 HANDLE_ERROR(cudaEventRecord(stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(stop));

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 start, stop));

 // finish up on the CPU side

 c = 0;

 for (int i=0; i<blocksPerGrid; i++) {

 c += partial_c[i];

 }

cudA c on multIPle GPus

220

The only thing remaining in the cudaHostAlloc() version of the dot product is
cleanup.

 HANDLE_ERROR(cudaFreeHost(a));

 HANDLE_ERROR(cudaFreeHost(b));

 HANDLE_ERROR(cudaFreeHost(partial_c));

 // free events

 HANDLE_ERROR(cudaEventDestroy(start));

 HANDLE_ERROR(cudaEventDestroy(stop));

 printf("Value calculated: %f\n", c);

 return elapsedTime;

}

You will notice that no matter what flags we use with cudaHostAlloc(),
the memory always gets freed in the same way. Specifically, a call to
 cudaFreeHost() does the trick.

And that’s that! All that remains is to look at how main() ties all of this together.
The first thing we need to check is whether our device supports mapping host
memory. We do this the same way we checked for device overlap in the previous
chapter, with a call to cudaGetDeviceProperties().

int main(void) {

 cudaDeviceProp prop;

 int whichDevice;

 HANDLE_ERROR(cudaGetDevice(&whichDevice));

 HANDLE_ERROR(cudaGetDeviceProperties(&prop, whichDevice));

 if (prop.canMapHostMemory != 1) {

 printf("Device cannot map memory.\n");

 return 0;

 }

ZERO-COPY HOST MEMORY

221

11.2 ZERO-COPY HOST MEMORY

Assuming that our device supports zero-copy memory, we place the runtime
into a state where it will be able to allocate zero-copy buffers for us. We accom-
plish this by a call to cudaSetDeviceFlags() and by passing the flag
 cudaDeviceMapHost to indicate that we want the device to be allowed to map
host memory:

 HANDLE_ERROR(cudaSetDeviceFlags(cudaDeviceMapHost));

That’s really all there is to main(). We run our two tests, display the elapsed
time, and exit the application:

 float elapsedTime = malloc_test(N);

 printf("Time using cudaMalloc: %3.1f ms\n",

 elapsedTime);

 elapsedTime = cuda_host_alloc_test(N);

 printf("Time using cudaHostAlloc: %3.1f ms\n",

 elapsedTime);

}

The kernel itself is unchanged from Chapter 5, but for the sake of completeness,
here it is in its entirety:

#define imin(a,b) (a<b?a:b)

const int N = 33 * 1024 * 1024;

const int threadsPerBlock = 256;

const int blocksPerGrid =

 imin(32, (N+threadsPerBlock-1) / threadsPerBlock);

__global__ void dot(int size, float *a, float *b, float *c) {

 __shared__ float cache[threadsPerBlock];

 int tid = threadIdx.x + blockIdx.x * blockDim.x;

 int cacheIndex = threadIdx.x;

cudA c on multIPle GPus

222

 float temp = 0;

 while (tid < size) {

 temp += a[tid] * b[tid];

 tid += blockDim.x * gridDim.x;

 }

 // set the cache values

 cache[cacheIndex] = temp;

 // synchronize threads in this block

 __syncthreads();

 // for reductions, threadsPerBlock must be a power of 2

 // because of the following code

 int i = blockDim.x/2;

 while (i != 0) {

 if (cacheIndex < i)

 cache[cacheIndex] += cache[cacheIndex + i];

 __syncthreads();

 i /= 2;

 }

 if (cacheIndex == 0)

 c[blockIdx.x] = cache[0];

}

ZERO-COPY PERFORMANCE11.2.2

What should we expect to gain from using zero-copy memory? The answer to
this question is different for discrete GPUs and integrated GPUs. Discrete GPUs
are graphics processors that have their own dedicated DRAMs and typically sit
on separate circuit boards from the CPU. For example, if you have ever installed
a graphics card into your desktop, this GPU is a discrete GPU. Integrated GPUs
are graphics processors built into a system’s chipset and usually share regular

ZERO-COPY HOST MEMORY

223

11.2 ZERO-COPY HOST MEMORY

system memory with the CPU. Many recent systems built with NVIDIA’s nForce
media and communications processors (MCPs) contain CUDA-capable inte-
grated GPUs. In addition to nForce MCPs, all the netbook, notebook, and desktop
computers based on NVIDIA’s new ION platform contain integrated, CUDA-
capable GPUs. For integrated GPUs, the use of zero-copy memory is always a
performance win because the memory is physically shared with the host anyway.
Declaring a buffer as zero-copy has the sole effect of preventing unnecessary
copies of data. But remember that nothing is free and that zero-copy buffers
are still constrained in the same way that all pinned memory allocations are
constrained: Each pinned allocation carves into the system’s available physical
memory, which will eventually degrade system performance.

In cases where inputs and outputs are used exactly once, we will even see a
performance enhancement when using zero-copy memory with a discrete GPU.
Since GPUs are designed to excel at hiding the latencies associated with memory
access, performing reads and writes over the PCI Express bus can be mitigated
to some degree by this mechanism, yielding a noticeable performance advantage.
But since the zero-copy memory is not cached on the GPU, in situations where
the memory gets read multiple times, we will end up paying a large penalty that
could be avoided by simply copying the data to the GPU first.

How do you determine whether a GPU is integrated or discrete? Well, you can
open up your computer and look, but this solution is fairly unworkable for your
CUDA C application. Your code can check this property of a GPU by, not surpris-
ingly, looking at the structure returned by cudaGetDeviceProperties(). This
structure has a field named integrated, which will be true if the device is an
integrated GPU and false if it’s not.

Since our dot product application satisfies the “read and/or write exactly once”
constraint, it’s possible that it will enjoy a performance boost when run with
zero-copy memory. And in fact, it does enjoy a slight boost in performance. On a
GeForce GTX 285, the execution time improves by more than 45 percent, drop-
ping from 98.1ms to 52.1ms when migrated to zero-copy memory. A GeForce GTX
280 enjoys a similar improvement, speeding up by 34 percent from 143.9 ms to
94.7ms. Of course, different GPUs will exhibit different performance characteris-
tics because of varying ratios of computation to bandwidth, as well as because of
variations in effective PCI Express bandwidth across chipsets.

cudA c on multIPle GPus

224

Using Multiple GPUs11.3
In the previous section, we mentioned how devices are either integrated or
discrete GPUs, where the former is built into the system’s chipset and the latter is
typically an expansion card in a PCI Express slot. More and more systems contain
both integrated and discrete GPUs, meaning that they also have multiple CUDA-
capable processors. NVIDIA also sells products, such as the GeForce GTX 295,
that contain more than one GPU. A GeForce GTX 295, while physically occupying
a single expansion slot, will appear to your CUDA applications as two separate
GPUs. Furthermore, users can also add multiple GPUs to separate PCI Express
slots, connecting them with bridges using NVIDIA’s scalable link interface (slI)
technology. As a result of these trends, it has become relatively common to have
a CUDA application running on a system with multiple graphics processors. Since
our CUDA applications tend to be very parallelizable to begin with, it would be
excellent if we could use every CUDA device in the system to achieve maximum
throughput. So, let’s figure out how we can accomplish this.

To avoid learning a new example, let’s convert our dot product to use multiple
GPUs. To make our lives easier, we will summarize all the data necessary to
compute a dot product in a single structure. You’ll see momentarily exactly why
this will make our lives easier.

struct DataStruct {

 int deviceID;

 int size;

 float *a;

 float *b;

 float returnValue;

};

This structure contains the identification for the device on which the dot product
will be computed; it contains the size of the input buffers as well as pointers to
the two inputs a and b. Finally, it has an entry to store the value computed as the
dot product of a and b.

To use N GPUs, we first would like to know exactly what value of N we’re dealing
with. So, we start our application with a call to cudaGetDeviceCount() in

usInG multIPle GPus

225

11.3 USING MULTIPLE GPUS

order to determine how many CUDA-capable processors have been installed in
our system.

int main(void) {

 int deviceCount;

 HANDLE_ERROR(cudaGetDeviceCount(&deviceCount));

 if (deviceCount < 2) {

 printf("We need at least two compute 1.0 or greater "

 "devices, but only found %d\n", deviceCount);

 return 0;

 }

This example is designed to show multi-GPU usage, so you’ll notice that we
simply exit if the system has only one CUDA device (not that there’s anything
wrong with that). This is not encouraged as a best practice for obvious reasons.
To keep things as simple as possible, we’ll allocate standard host memory for our
inputs and fill them with data exactly how we’ve done in the past.

 float *a = (float*)malloc(sizeof(float) * N);

 HANDLE_NULL(a);

 float *b = (float*)malloc(sizeof(float) * N);

 HANDLE_NULL(b);

 // fill in the host memory with data

 for (int i=0; i<N; i++) {

 a[i] = i;

 b[i] = i*2;

 }

We’re now ready to dive into the multi-GPU code. The trick to using multiple GPUs
with the CUDA runtime API is realizing that each GPU needs to be controlled
by a different CPU thread. Since we have used only a single GPU before, we
haven’t needed to worry about this. We have moved a lot of the annoyance of
multithreaded code to our file of auxiliary code, book.h. With this code tucked
away, all we need to do is fill a structure with data necessary to perform the

cudA c on multIPle GPus

226

 computations. Although the system could have any number of GPUs greater than
one, we will use only two of them for clarity:

 DataStruct data[2];

 data[0].deviceID = 0;

 data[0].size = N/2;

 data[0].a = a;

 data[0].b = b;

 data[1].deviceID = 1;

 data[1].size = N/2;

 data[1].a = a + N/2;

 data[1].b = b + N/2;

To proceed, we pass one of the DataStruct variables to a utility function we’ve
named start_thread(). We also pass start_thread() a pointer to a func-
tion to be called by the newly created thread; this example’s thread function is
called routine(). The function start_thread() will create a new thread that
then calls the specified function, passing the DataStruct to this function. The
other call to routine() gets made from the default application thread (so we’ve
created only one additional thread).

 CUTThread thread = start_thread(routine, &(data[0]));

 routine(&(data[1]));

Before we proceed, we have the main application thread wait for the other thread
to finish by calling end_thread().

 end_thread(thread);

Since both threads have completed at this point in main(), it’s safe to clean up
and display the result.

usInG multIPle GPus

227

11.3 USING MULTIPLE GPUS

 free(a);

 free(b);

 printf("Value calculated: %f\n",

 data[0].returnValue + data[1].returnValue);

 return 0;

}

Notice that we sum the results computed by each thread. This is the last step
in our dot product reduction. In another algorithm, this combination of multiple
results may involve other steps. In fact, in some applications, the two GPUs may
be executing completely different code on completely different data sets. For
simplicity’s sake, this is not the case in our dot product example.

Since the dot product routine is identical to the other versions you’ve seen, we’ll
omit it from this section. However, the contents of routine() may be of interest.
We declare routine() as taking and returning a void* so that you can reuse
the start_thread() code with arbitrary implementations of a thread function.
Although we’d love to take credit for this idea, it’s fairly standard procedure for
callback functions in C:

void* routine(void *pvoidData) {

 DataStruct *data = (DataStruct*)pvoidData;

 HANDLE_ERROR(cudaSetDevice(data->deviceID));

Each thread calls cudaSetDevice(), and each passes a different ID to this
function. As a result, we know each thread will be manipulating a different GPU.
These GPUs may have identical performance, as with the dual-GPU GeForce
GTX 295, or they may be different GPUs as would be the case in a system that
has both an integrated GPU and a discrete GPU. These details are not important
to our application, though they might be of interest to you. Particularly, these
details prove useful if you depend on a certain minimum compute capability to
launch your kernels or if you have a serious desire to load balance your applica-
tion across the system’s GPUs. If the GPUs are different, you will need to do some

cudA c on multIPle GPus

228

work to partition the computations so that each GPU is occupied for roughly
the same amount of time. For our purposes in this example, however, these are
piddling details with which we won’t worry.

Outside the call to cudaSetDevice() to specify which CUDA device we
intend to use, this implementation of routine() is remarkably similar to the
vanilla malloc_test() from Section 11.1.1: Zero-Copy Dot Product. We allo-
cate buffers for our GPU copies of the input and a buffer for our partial results
followed by a cudaMemcpy() of each input array to the GPU.

 int size = data->size;

 float *a, *b, c, *partial_c;

 float *dev_a, *dev_b, *dev_partial_c;

 // allocate memory on the CPU side

 a = data->a;

 b = data->b;

 partial_c = (float*)malloc(blocksPerGrid*sizeof(float));

 // allocate the memory on the GPU

 HANDLE_ERROR(cudaMalloc((void**)&dev_a,

 size*sizeof(float)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_b,

 size*sizeof(float)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_partial_c,

 blocksPerGrid*sizeof(float)));

 // copy the arrays 'a' and 'b' to the GPU

 HANDLE_ERROR(cudaMemcpy(dev_a, a, size*sizeof(float),

 cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMemcpy(dev_b, b, size*sizeof(float),

 cudaMemcpyHostToDevice));

We then launch our dot product kernel, copy the results back, and finish the
computation on the CPU.

usInG multIPle GPus

229

11.3 USING MULTIPLE GPUS

 dot<<<blocksPerGrid,threadsPerBlock>>>(size, dev_a, dev_b,

 dev_partial_c);

 // copy the array 'c' back from the GPU to the CPU

 HANDLE_ERROR(cudaMemcpy(partial_c, dev_partial_c,

 blocksPerGrid*sizeof(float),

 cudaMemcpyDeviceToHost));

 // finish up on the CPU side

 c = 0;

 for (int i=0; i<blocksPerGrid; i++) {

 c += partial_c[i];

 }

As usual, we clean up our GPU buffers and return the dot product we’ve
computed in the returnValue field of our DataStruct.

 HANDLE_ERROR(cudaFree(dev_a));

 HANDLE_ERROR(cudaFree(dev_b));

 HANDLE_ERROR(cudaFree(dev_partial_c));

 // free memory on the CPU side

 free(partial_c);

 data->returnValue = c;

 return 0;

}

So when we get down to it, outside of the host thread management issue, using
multiple GPUs is not too much tougher than using a single GPU. Using our helper
code to create a thread and execute a function on that thread, this becomes
significantly more manageable. If you have your own thread libraries, you should
feel free to use them in your own applications. You just need to remember that
each GPU gets its own thread, and everything else is cream cheese.

cudA c on multIPle GPus

230

Portable Pinned Memory11.4
The last important piece to using multiple GPUs involves the use of pinned
memory. We learned in Chapter 10 that pinned memory is actually host memory
that has its pages locked in physical memory to prevent it from being paged out
or relocated. However, it turns out that pages can appear pinned to a single CPU
thread only. That is, they will remain page-locked if any thread has allocated them
as pinned memory, but they will only appear page-locked to the thread that allo-
cated them. If the pointer to this memory is shared between threads, the other
threads will see the buffer as standard, pageable data.

As a side effect of this behavior, when a thread that did not allocate a pinned
buffer attempts to perform a cudaMemcpy() using it, the copy will be performed
at standard pageable memory speeds. As we saw in Chapter 10, this speed can
be roughly 50 percent of the maximum attainable transfer speed. What’s worse,
if the thread attempts to enqueue a cudaMemcpyAsync() call into a CUDA
stream, this operation will fail because it requires a pinned buffer to proceed.
Since the buffer appears pageable from the thread that didn’t allocate it, the call
dies a grisly death. Even in the future nothing works!

But there is a remedy to this problem. We can allocate pinned memory as
portable, meaning that we will be allowed to migrate it between host threads
and allow any thread to view it as a pinned buffer. To do so, we use our trusty
 cudaHostAlloc() to allocate the memory, but we call it with a new flag:
 cudaHostAllocPortable. This flag can be used in concert with the
other flags you’ve seen, such as cudaHostAllocWriteCombined and
 cudaHostAllocMapped. This means that you can allocate your host buffers as
any combination of portable, zero-copy and write-combined.

To demonstrate portable pinned memory, we’ll enhance our multi-GPU dot
product application. We’ll adapt our original zero-copy version of the dot
product, so this version begins as something of a mash-up of the zero-copy and
multi-GPU versions. As we have throughout this chapter, we need to verify that
there are at least two CUDA-capable GPUs and that both can handle zero-copy
buffers.

PORTABLE PINNED MEMORY

231

11.4 PORTABLE PINNED MEMORY

int main(void) {

 int deviceCount;

 HANDLE_ERROR(cudaGetDeviceCount(&deviceCount));

 if (deviceCount < 2) {

 printf("We need at least two compute 1.0 or greater "

 "devices, but only found %d\n", deviceCount);

 return 0;

 }

 cudaDeviceProp prop;

 for (int i=0; i<2; i++) {

 HANDLE_ERROR(cudaGetDeviceProperties(&prop, i));

 if (prop.canMapHostMemory != 1) {

 printf("Device %d cannot map memory.\n", i);

 return 0;

 }

 }

In previous examples, we’d be ready to start allocating memory on the host to
hold our input vectors. To allocate portable pinned memory, however, it’s neces-
sary to first set the CUDA device on which we intend to run. Since we intend to
use the device for zero-copy memory as well, we follow the cudaSetDevice()
call with a call to cudaSetDeviceFlags(), as we did in Section 11.1.1: Zero-
Copy Dot Product.

 float *a, *b;

 HANDLE_ERROR(cudaSetDevice(0));

 HANDLE_ERROR(cudaSetDeviceFlags(cudaDeviceMapHost));

 HANDLE_ERROR(cudaHostAlloc((void**)&a, N*sizeof(float),

 cudaHostAllocWriteCombined |

 cudaHostAllocPortable |

 cudaHostAllocMapped));

 HANDLE_ERROR(cudaHostAlloc((void**)&b, N*sizeof(float),

 cudaHostAllocWriteCombined |

 cudaHostAllocPortable |

 cudaHostAllocMapped));

cudA c on multIPle GPus

232

Earlier in this chapter, we called cudaSetDevice() but not until we had already
allocated our memory and created our threads. One of the requirements of allo-
cating page-locked memory with cudaHostAlloc(), though, is that we have
initialized the device first by calling cudaSetDevice(). You will also notice that
we pass our newly learned flag, cudaHostAllocPortable, to both allocations.
Since these were allocated after calling cudaSetDevice(0), only CUDA device
zero would see these buffers as pinned memory if we had not specified that they
were to be portable allocations.

We continue the application as we have in the past, generating data for our input
vectors and preparing our DataStruct structures as we did in the multi-GPU
example in Section 11.2: Zero-Copy Performance.

 // fill in the host memory with data

 for (int i=0; i<N; i++) {

 a[i] = i;

 b[i] = i*2;

 }

 // prepare for multithread

 DataStruct data[2];

 data[0].deviceID = 0;

 data[0].offset = 0;

 data[0].size = N/2;

 data[0].a = a;

 data[0].b = b;

 data[1].deviceID = 1;

 data[1].offset = N/2;

 data[1].size = N/2;

 data[1].a = a;

 data[1].b = b;

We can then create our secondary thread and call routine() to begin
computing on each device.

PORTABLE PINNED MEMORY

233

11.4 PORTABLE PINNED MEMORY

 CUTThread thread = start_thread(routine, &(data[1]));

 routine(&(data[0]));

 end_thread(thread);

Because our host memory was allocated by the CUDA runtime, we use
 cudaFreeHost() to free it. Other than no longer calling free(), we have seen
all there is to see in main().

 // free memory on the CPU side

 HANDLE_ERROR(cudaFreeHost(a));

 HANDLE_ERROR(cudaFreeHost(b));

 printf("Value calculated: %f\n",

 data[0].returnValue + data[1].returnValue);

 return 0;

}

To support portable pinned memory and zero-copy memory in our multi-GPU
application, we need to make two notable changes in the code for routine().
The first is a bit subtle, and in no way should this have been obvious.

void* routine(void *pvoidData) {

 DataStruct *data = (DataStruct*)pvoidData;

 if (data->deviceID != 0) {

 HANDLE_ERROR(cudaSetDevice(data->deviceID));

 HANDLE_ERROR(cudaSetDeviceFlags(cudaDeviceMapHost));

 }

You may recall in our multi-GPU version of this code, we need a call to
cudaSetDevice() in routine() in order to ensure that each participating
thread controls a different GPU. On the other hand, in this example we have
already made a call to cudaSetDevice() from the main thread. We did so in
order to allocate pinned memory in main(). As a result, we only want to call

cudA c on multIPle GPus

234

cudaSetDevice() and cudaSetDeviceFlags() on devices where we have
not made this call. That is, we call these two functions if the deviceID is not
zero. Although it would yield cleaner code to simply repeat these calls on device
zero, it turns out that this is in fact an error. Once you have set the device on a
particular thread, you cannot call cudaSetDevice() again, even if you pass the
same device identifier. The highlighted if() statement helps us avoid this little
nasty-gram from the CUDA runtime, so we move on to the next important change
to routine().

In addition to using portable pinned memory for the host-side memory, we
are using zero-copy in order to access these buffers directly from the GPU.
Consequently, we no longer use cudaMemcpy() as we did in the original
multi-GPU application, but we use cudaHostGetDevicePointer() to get
valid device pointers for the host memory as we did in the zero-copy example.
However, you will notice that we use standard GPU memory for the partial results.
As always, this memory gets allocated using cudaMalloc().

 int size = data->size;

 float *a, *b, c, *partial_c;

 float *dev_a, *dev_b, *dev_partial_c;

 // allocate memory on the CPU side

 a = data->a;

 b = data->b;

 partial_c = (float*)malloc(blocksPerGrid*sizeof(float));

 HANDLE_ERROR(cudaHostGetDevicePointer(&dev_a, a, 0));

 HANDLE_ERROR(cudaHostGetDevicePointer(&dev_b, b, 0));

 HANDLE_ERROR(cudaMalloc((void**)&dev_partial_c,

 blocksPerGrid*sizeof(float)));

 // offset 'a' and 'b' to where this GPU is gets it data

 dev_a += data->offset;

 dev_b += data->offset;

CHAPTER REVIEW

235

11.5 CHAPTER REVIEW

At this point, we’re pretty much ready to go, so we launch our kernel and copy our
results back from the GPU.

 dot<<<blocksPerGrid,threadsPerBlock>>>(size, dev_a, dev_b,

 dev_partial_c);

 // copy the array 'c' back from the GPU to the CPU

 HANDLE_ERROR(cudaMemcpy(partial_c, dev_partial_c,

 blocksPerGrid*sizeof(float),

 cudaMemcpyDeviceToHost));

We conclude as we always have in our dot product example by summing
our partial results on the CPU, freeing our temporary storage, and returning
to main().

 // finish up on the CPU side

 c = 0;

 for (int i=0; i<blocksPerGrid; i++) {

 c += partial_c[i];

 }

 HANDLE_ERROR(cudaFree(dev_partial_c));

 // free memory on the CPU side

 free(partial_c);

 data->returnValue = c;

 return 0;

}

Chapter Review11.5
We have seen some new types of host memory allocations, all of which get
 allocated with a single call, cudaHostAlloc(). Using a combination of this
one entry point and a set of argument flags, we can allocate memory as any
combination of zero-copy, portable, and/or write-combined. We used zero-copy

cudA c on multIPle GPus

236

buffers to avoid making explicit copies of data to and from the GPU, a maneuver
that potentially speeds up a wide class of applications. Using a support library for
threading, we manipulated multiple GPUs from the same application, allowing
our dot product computation to be performed across multiple devices. Finally,
we saw how multiple GPUs could share pinned memory allocations by allo-
cating them as portable pinned memory. Our last example used portable pinned
memory, multiple GPUs, and zero-copy buffers in order to demonstrate a turbo-
charged version of the dot product we started toying with back in Chapter 5. As
multiple-device systems gain popularity, these techniques should serve you well
in harnessing the computational power of your target platform in its entirety.

237

Chapter 12

the Final Countdown

Congratulations! We hope you’ve enjoyed learning about CUDA C and experi-
menting some with GPU computing. It’s been a long trip, so let’s take a moment
to review where we started and how much ground we’ve covered. Starting with
a background in C or C++ programming, we’ve learned how to use the CUDA
runtime’s angle bracket syntax to easily launch multiple copies of kernels across
any number of multiprocessors. We expanded these concepts to use collec-
tions of threads and blocks, operating on arbitrarily large inputs. These more
complex launches exploited interthread communication using the GPU’s special,
on-chip shared memory, and they employed dedicated synchronization primitives
to ensure correct operation in an environment that supports (and encourages)
 thousands upon thousands of parallel threads.

Armed with basic concepts about parallel programming using CUDA C on
NVIDIA’s CUDA Architecture, we explored some of the more advanced concepts
and APIs that NVIDIA provides. The GPU’s dedicated graphics hardware proves
useful for GPU computing, so we learned how to exploit texture memory to accel-
erate some common patterns of memory access. Because many users add GPU
computing to their interactive graphics applications, we explored the interopera-
tion of CUDA C kernels with industry-standard graphics APIs such as OpenGL
and DirectX. Atomic operations on both global and shared memory allowed safe,

THE FINAL COUNTDOWN

238

multithreaded access to common memory locations. Moving steadily into more
and more advanced topics, streams enabled us to keep our entire system as busy
as possible, allowing kernels to execute simultaneously with memory copies
between the host and GPU. Finally, we looked at the ways in which we could allo-
cate and use zero-copy memory to accelerate applications on integrated GPUs.
Moreover, we learned to initialize multiple devices and allocate portable pinned
memory in order to write CUDA C that fully utilizes increasingly common, multi-
GPU environments.

Chapter Objectives12.1
Through the course of this chapter, you will accomplish the following:

You will learn about some of the tools available to aid your CUDA C development.•

You will learn about additional written and code resources to take your CUDA C •
development to the next level.

CUDA Tools12.2
Through the course of this book, we have relied upon several components of
the CUDA C software system. The applications we wrote made heavy use of the
CUDA C compiler in order to convert our CUDA C kernels into code that could be
executed on NVIDIA GPUs. We also used the CUDA runtime in order to perform
much of the setup and dirty work behind launching kernels and communicating
with the GPU. The CUDA runtime, in turn, uses the CUDA driver to talk directly
to the hardware in your system. In addition to these components that we have
already used at length, NVIDIA makes available a host of other software in order
to ease the development of CUDA C applications. This section does not serve well
as a user’s manual to these products, but rather, it aims solely to inform you of
the existence and utility of these packages.

cudA toolKIt12.2.1

You almost certainly already have the CUDA Toolkit collection of software on
your development machine. We can be so sure of this because the set of CUDA
C compiler tools comprises one of the principal components of this package. If

cudA tools

239

12.2 CUDA TOOLS

you don’t have the CUDA Toolkit on your machine, then it’s a veritable certainty
that you haven’t tried to write or compile any CUDA C code. We’re on to you now,
sucker! Actually, this is no big deal (but it does make us wonder why you’ve read
this entire book). On the other hand, if you have been working through the exam-
ples in this book, then you should possess the libraries we’re about to discuss.

CUFFT12.2.2

The CUDA Toolkit comes with two very important utility libraries if you plan to
pursue GPU computing in your own applications. First, NVIDIA provides a tuned
Fast Fourier Transform library known as CUFFT. As of release 3.0, the CUFFT
library supports a number of useful features, including the following:

One-, two-, and three-dimensional transforms of both real-valued and •
complex-valued input data

Batch execution for performing multiple one-dimensional transforms in •
parallel

2D and 3D transforms with sizes ranging from 2 to 16,384 in any dimension•

1D transforms of inputs up to 8 million elements in size•

In-place and out-of-place transforms for both real-valued and complex-•
valued data

NVIDIA provides the CUFFT library free of charge with an accompanying license
that allows for use in any application, regardless of whether it’s for personal,
academic, or professional development.

CUBLAS12.2.3

In addition to a Fast Fourier Transform library, NVIDIA also provides a library of
linear algebra routines that implements the well-known package of Basic Linear
Algebra Subprograms (BLAS). This library, named CUBLAS, is also freely avail-
able and supports a large subset of the full BLAS package. This includes versions
of each routine that accept both single- and double-precision inputs as well
as real- and complex-valued data. Because BLAS was originally a FORTRAN-
implemented library of linear algebra routines, NVIDIA attempts to maximize
compatibility with the requirements and expectations of these implementations.
Specifically, the CUBLAS library uses a column-major storage layout for arrays,
rather than the row-major layout natively used by C and C++. In practice, this is

THE FINAL COUNTDOWN

240

not typically a concern, but it does allow for current users of BLAS to adapt their
applications to exploit the GPU-accelerated CUBLAS with minimal effort. NVIDIA
also distributes FORTRAN bindings to CUBLAS in order to demonstrate how to
link existing FORTRAN applications to CUDA libraries.

nvIdIA GPu comPutInG sdK12.2.4

Available separately from the NVIDIA drivers and CUDA Toolkit, the optional GPU
Computing SDK download contains a package of dozens and dozens of sample
GPU computing applications. We mentioned this SDK earlier in the book because
its samples serve as an excellent complement to the material we’ve covered in
the first 11 chapters. But if you haven’t taken a look yet, NVIDIA has geared these
samples toward varying levels of CUDA C competency as well as spreading them
over a broad spectrum of subject material. The samples are roughly categorized
into the following sections:

CUDA Basic Topics

CUDA Advanced Topics

CUDA Systems Integration

Data-Parallel Algorithms

Graphics Interoperability

Texture

Performance Strategies

Linear Algebra

Image/Video Processing

Computational Finance

Data Compression

Physically-Based Simulation

The examples work on any platform that CUDA C works on and can serve as
excellent jumping-off points for your own applications. For readers who have
considerable experience in some of these areas, we warn you against expecting
to see state-of-the-art implementations of your favorite algorithms in the NVIDIA

cudA tools

241

12.2 CUDA TOOLS

GPU Computing SDK. These code samples should not be treated as production-
worthy library code but rather as educational illustrations of functioning CUDA C
programs, not unlike the examples in this book.

NVIDIA PERFORMANCE PRIMITIVES12.2.5

In addition to the routines offered in the CUFFT and CUBLAS libraries, NVIDIA
also maintains a library of functions for performing CUDA-accelerated data
processing known as the NVIDIA Performance Primitives (NPP). Currently, NPP’s
initial set of functionality focuses specifically on imaging and video processing
and is widely applicable for developers in these areas. NVIDIA intends for NPP to
evolve over time to address a greater number of computing tasks in a wider range
of domains. If you have an interest in high-performance imaging or video applica-
tions, you should make it a priority to look into NPP, available as a free download
at www.nvidia.com/object/npp.html (or accessible from your favorite web search
engine).

DEBUGGING CUDA C12.2.6

We have heard from a variety of sources that, in rare instances, computer
software does not work exactly as intended when first executed. Some code
computes incorrect values, some fails to terminate execution, and some
code even puts the computer into a state that only a flip of the power switch
can remedy. Although having clearly never written code like this personally,
the authors of this book recognize that some software engineers may desire
resources to debug their CUDA C kernels. Fortunately, NVIDIA provides tools to
make this painful process significantly less troublesome.

CUDA-GDB

A tool known as CUDA-GDB is one of the most useful CUDA downloads available
to CUDA C programmers who develop their code on Linux-based systems. NVIDIA
extended the open source GNU debugger (gdb) to transparently support debug-
ging device code in real time while maintaining the familiar interface of gdb. Prior
to CUDA-GDB, there existed no good way to debug device code outside of using
the CPU to simulate the way in which it was expected to run. This method yielded
extremely slow debugging, and in fact, it was frequently a very poor approxi-
mation of the exact GPU execution of the kernel. NVIDIA’s CUDA-GDB enables
programmers to debug their kernels directly on the GPU, affording them all of

www.nvidia.com/object/npp.html

THE FINAL COUNTDOWN

242

the control that they’ve grown accustomed to with CPU debuggers. Some of the
highlights of CUDA-GDB include the following:

Viewing CUDA state, such as information regarding installed GPUs and their •
capabilities

Setting breakpoints in CUDA C source code•

Inspecting GPU memory, including all global and shared memory•

Inspecting the blocks and threads currently resident on the GPU•

Single-stepping a warp of threads•

Breaking into currently running applications, including hung or deadlocked •
applications

Along with the debugger, NVIDIA provides the CUDA Memory Checker whose
functionality can be accessed through CUDA-GDB or the stand-alone tool,
 cuda-memcheck. Because the CUDA Architecture includes a sophisticated
memory management unit built directly into the hardware, all illegal memory
accesses will be detected and prevented by the hardware. As a result of a
memory violation, your program will cease functioning as expected, so you will
certainly want visibility into these types of errors. When enabled, the CUDA
Memory Checker will detect any global memory violations or misaligned global
memory accesses that your kernel attempts to make, reporting them to you in a
far more helpful and verbose manner than previously possible.

NVIDIA PARALLEL NSIGHT

Although CUDA-GDB is a mature and fantastic tool for debugging your CUDA
C kernels on hardware in real time, NVIDIA recognizes that not every devel-
oper is over the moon about Linux. So, unless Windows users are hedging their
bets by saving up to open their own pet stores, they need a way to debug their
applications, too. Toward the end of 2009, NVIDIA introduced NVIDIA Parallel
Nsight (originally code-named Nexus), the first integrated GPU/CPU debugger
for Microsoft Visual Studio. Like CUDA-GDB, Parallel Nsight supports debug-
ging CUDA applications with thousands of threads. Users can place breakpoints
anywhere in their CUDA C source code, including breakpoints that trigger on
writes to arbitrary memory locations. They can inspect GPU memory directly
from the Visual Studio Memory window and check for out-of-bounds memory
accesses. This tool has been made publicly available in a beta program as of
press time, and the final version should be released shortly.

cudA tools

243

12.2 CUDA TOOLS

CUDA VISUAL PROFILER12.2.7

We often tout the CUDA Architecture as a wonderful foundation for high-
 performance computing applications. Unfortunately, the reality is that after
ferreting out all the bugs from your applications, even the most well-meaning
“high-performance computing” applications are more accurately referred to as
simply “computing” applications. We have often been in the position where we
wonder, “Why in the Sam Hill is my code performing so poorly?” In situations like
this, it helps to be able to execute the kernels in question under the watchful gaze
of a profiling tool. NVIDIA provides just such a tool, available as a separate down-
load on the CUDA Zone website. Figure 12.1 shows the Visual Profiler being used
to compare two implementations of a matrix transpose operation. Despite not
looking at a line of code, it becomes quite easy to determine that both memory
and instruction throughput of the transpose() kernel outstrip that of the
transpose_naive() kernel. (But then again, it would be unfair to expect much
more from a function with naive in the name.)

Figure 12.1 The CUDA Visual Profiler being used to profile a matrix transpose
application

THE FINAL COUNTDOWN

244

The CUDA Visual Profiler will execute your application, examining special perfor-
mance counters built into the GPU. After execution, the profiler can compile data
based on these counters and present you with reports based on what it observed.
It can verify how long your application spends executing each kernel as well
as determine the number of blocks launched, whether your kernel’s memory
accesses are coalesced, the number of divergent branches the warps in your code
execute, and so on. We encourage you to look into the CUDA Visual Profiler if you
have some subtle performance problems in need of resolution.

Written Resources12.3
If you haven’t already grown queasy from all the prose in this book, then it’s
possible you might actually be interested in reading more. We know that some of
you are more likely to want to play with code in order to continue your learning,
but for the rest of you, there are additional written resources to maintain your
growth as a CUDA C coder.

PROGRAMMING MASSIVELY PARALLEL PROCESSORS: A 12.3.1
HANDS-ON APPROACH

If you read Chapter 1, we assured you that this book was most decidedly not a
textbook on parallel architectures. Sure, we bandied about terms such as multi-
processor and warp, but this book strives to teach the softer side of programming
with CUDA C and its attendant APIs. We learned the CUDA C language within the
programming model set forth in the NVIDIA CUDA Programming Guide, largely
ignoring the way NVIDIA’s hardware actually accomplishes the tasks we give it.

But to truly become an advanced, well-rounded CUDA C programmer, you will
need a more intimate familiarity with the CUDA Architecture and some of the
nuances of how NVIDIA GPUs work behind the scenes. To accomplish this,
we recommend working your way through Programming Massively Parallel
Processors: A Hands-on Approach. To write it, David Kirk, formerly NVIDIA’s chief
scientist, collaborated with Wen-mei W. Hwu, the W.J. Sanders III chairman in
electrical and computer engineering at University of Illinois. You’ll encounter
a number of familiar terms and concepts, but you will learn about the gritty
details of NVIDIA’s CUDA Architecture, including thread scheduling and latency
tolerance, memory bandwidth usage and efficiency, specifics on floating-point

wrItten resources

245

12.3 WRITTEN RESOURCES

handling, and much more. The book also addresses parallel programming in
a more general sense than this book, so you will gain a better overall under-
standing of how to engineer parallel solutions to large, complex problems.

cudA u12.3.2

Some of us were unlucky enough to have attended university prior to the exciting
world of GPU computing. For those who are fortunate enough to be attending
college now or in the near future, about 300 universities across the world
currently teach courses involving CUDA. But before you start a crash diet to fit
back into your college gear, there’s an alternative! On the CUDA Zone website,
you will find a link for CUDA U, which is essentially an online university for CUDA
education. Or you can navigate directly there with the URL www.nvidia.com/
object/cuda_education. Although you will be able to learn quite a bit about GPU
computing if you attend some of the online lectures at CUDA U, as of press time
there are still no online fraternities for partying after class.

unIversIty course mAterIAls

Among the myriad sources of CUDA education, one of the highlights includes an
entire course from the University of Illinois on programming in CUDA C. NVIDIA
and the University of Illinois provide this content free of charge in the M4V video
format for your iPod, iPhones, or compatible video players. We know what you’re
thinking: “Finally, a way to learn CUDA while I wait in line at the Department of
Motor Vehicles!” You may also be wondering why we waited until the very end
of this book to inform you of the existence of what is essentially a movie version
of this book. We’re sorry for holding out on you, but the movie is hardly ever as
good as the book anyway, right? In addition to actual course materials from the
University of Illinois and from the University of California Davis, you will also find
materials from CUDA Training Podcasts and links to third-party training and
consultancy services.

DR. DOBB’S

For more than 30 years, Dr. Dobb’s has covered nearly every major develop-
ment in computing technology, and NVIDIA’s CUDA is no exception. As part of an
ongoing series, Dr. Dobb’s has published an extensive series of articles cutting a
broad swath through the CUDA landscape. Entitled CUDA, Supercomputing for the
Masses, the series starts with an introduction to GPU computing and progresses

www.nvidia.com/object/cuda_education
www.nvidia.com/object/cuda_education

THE FINAL COUNTDOWN

246

quickly from a first kernel to other pieces of the CUDA programming model. The
articles in Dr. Dobb’s cover error handling, global memory performance, shared
memory, the CUDA Visual Profiler, texture memory, CUDA-GDB, and the CUDPP
library of data-parallel CUDA primitives, as well as many other topics. This series
of articles is an excellent place to get additional information about some of the
material we’ve attempted to convey in this book. Furthermore, you’ll find prac-
tical information concerning some of the tools that we’ve only had time to glance
over in this text, such as the profiling and debugging options available to you. The
series of articles is linked from the CUDA Zone web page but is readily accessible
through a web search for Dr Dobbs CUDA.

NVIDIA FORUMS12.3.3

Even after digging around all of NVIDIA’s documentation, you may find your-
self with an unanswered or particularly intriguing question. Perhaps you’re
wondering whether anyone else has seen some funky behavior you’re expe-
riencing. Or maybe you’re throwing a CUDA celebration party and wanted to
assemble a group of like-minded individuals. For anything you’re interested in
asking, we strongly recommend the forums on NVIDIA’s website. Located at
http://forums.nvidia.com, the forums are a great place to ask questions of other
CUDA users. In fact, after reading this book, you’re in a position to potentially
help others if you want! NVIDIA employees regularly prowl the forums, too, so
the trickiest questions will prompt authoritative advice right from the source. We
also love to get suggestions for new features and feedback on the good, bad, and
ugly things that we at NVIDIA do.

Code Resources12.4
Although the NVIDIA GPU Computing SDK is a treasure trove of how-to samples,
it’s not designed to be used for much more than pedagogy. If you’re hunting for
production-caliber, CUDA-powered libraries or source code, you’ll need to look a
bit further. Fortunately, there is a large community of CUDA developers who have
produced top-notch solutions. A couple of these tools and libraries are presented
here, but you are encouraged to search the Web for whatever solutions you need.
And hey, maybe you’ll contribute some of your own to the CUDA C community
some day!

http://forums.nvidia.com

code resources

247

12.4 CODE RESOURCES

CUDA DATA PARALLEL PRIMITIVES LIBRARY12.4.1

NVIDIA, with the help of researchers at the University of California Davis, has
released a library known as the CUDA Data Parallel Primitives Library (CUDPP).
CUDPP, as the name indicates, is a library of data-parallel algorithm primitives.
Some of these primitives include parallel prefix-sum (scan), parallel sort, and
parallel reduction. Primitives such as these form the foundation of a wide variety
of data-parallel algorithms, including sorting, stream compaction, building
data structures, and many others. If you’re looking to write an even moderately
complex algorithms, chances are good that either CUDPP already has what you
need or it can get you significantly closer to where you want to be. Download it at
http://code.google.com/p/cudpp.

culAtools12.4.2

As we mentioned in Section 12.1.3: CUBLAS, NVIDIA provides an implementation
of the BLAS packaged along with the CUDA Toolkit download. For readers who
need a broader solution for linear algebra, take a look at EM Photonics’ CUDA
implementation of the industry-standard Linear Algebra Package (LAPACK).
Its LAPACK implementation is known as CULAtools and offers more complex
linear algebra routines that are built on NVIDIA’s CUBLAS technology. The
freely available Basic package offers LU decomposition, QR factorization, linear
system solver, and singular value decomposition, as well as least squares and
constrained least squares solvers. You can obtain the Basic download at
www.culatools.com/versions/basic. You will also notice that EM Photonics offers
Premium and Commercial licenses, which contain a far greater fraction of the
LAPACK routines, as well as licensing terms that will allow you to distribute your
own commercial applications based on CULAtools.

lAnGuAGe wrAPPers12.4.3

This book has primarily been concerned with C and C++, but clearly hundreds
of projects exist that don’t employ these languages. Fortunately, third parties
have written wrappers to allow access to CUDA technology from languages not
officially supported by NVIDIA. NVIDIA itself provides FORTRAN bindings for
its CUBLAS library, but you can also find Java bindings for several of the CUDA
libraries at www.jcuda.org. Likewise, Python wrappers to allow the use of CUDA C
kernels from Python applications are available from the PyCUDA project at

www.culatools.com/versions/basic
www.jcuda.org
http://code.google.com/p/cudpp

THE FINAL COUNTDOWN

248

http://mathema.tician.de/software/pycuda. Finally, there are bindings for
the Microsoft .NET environment available from the CUDA.NET project at
www.hoopoe-cloud.com/Solutions/CUDA.NET.

Although these projects are not officially supported by NVIDIA, they have been
around for several versions of CUDA, are all freely available, and each has many
successful customers. The moral of this story is, if your language of choice (or
your boss’s choice) is not C or C++, you should not rule out GPU computing until
you’ve first looked to see whether the necessary bindings are available.

Chapter Review12.5
And there you have it. Even after 11 chapters of CUDA C, there are still loads of
resources to download, read, watch, and compile. This is a remarkably interesting
time to be learning GPU computing, as the era of heterogeneous computing
platforms matures. We hope that you have enjoyed learning about one of the
most pervasive parallel programming environments in existence. Moreover, we
hope that you leave this experience excited about the possibilities to develop new
and exciting means for interacting with computers and for processing the ever-
increasing amount of information available to your software. It’s your ideas and the
amazing technologies you develop that will push GPU computing to the next level.

www.hoopoe-cloud.com/Solutions/CUDA.NET
http://mathema.tician.de/software/pycuda

249

Appendix

Advanced Atomics

Chapter 9 covered some of the ways in which we can use atomic operations to
enable hundreds of threads to safely make concurrent modifications to shared
data. In this appendix, we’ll look at an advanced method for using atomics to
implement locking data structures. On its surface, this topic does not seem much
more complicated than anything else we’ve examined. And in reality, this is accu-
rate. You’ve learned a lot of complex topics through this book, and locking data
structures are no more challenging than these. So, why is this material hiding in
the appendix? We don’t want to reveal any spoilers, so if you’re intrigued, read on,
and we’ll discuss this through the course of the appendix.

AdvAnced AtomIcs

250

Dot Product RevisitedA.1
In Chapter 5, we looked at the implementation of a vector dot product using CUDA
C. This algorithm was one of a large family of algorithms known as reductions. If
you recall, the algorithm computed the dot product of two input vectors by doing
the following:

Each thread in each block multiplies two corresponding elements of the input 1.
vectors and stores the products in shared memory.

Although a block has more than one product, a thread adds two of the 2.
products and stores the result back to shared memory. Each step results
in half as many values as it started with (this is where the term reduction
comes from)

When every block has a final sum, each one writes its value to global memory 3.
and exits.

If the kernel ran with 4. N parallel blocks, the CPU sums these remaining N
values to generate the final dot product.

This high-level look at the dot product algorithm is intended to be review, so if
it’s been a while or you’ve had a couple glasses of Chardonnay, it may be worth
the time to review Chapter 5. If you feel comfortable enough with the dot product
code to continue, draw your attention to step 4 in the algorithm. Although it
doesn’t involve copying much data to the host or performing many calcula-
tions on the CPU, moving the computation back to the CPU to finish is indeed as
awkward as it sounds.

But it’s more than an issue of an awkward step to the algorithm or the inelegance
of the solution. Consider a scenario where a dot product computation is just one
step in a long sequence of operations. If you want to perform every operation on
the GPU because your CPU is busy with other tasks or computations, you’re out
of luck. As it stands, you’ll be forced to stop computing on the GPU, copy inter-
mediate results back to the host, finish the computation with the CPU, and finally
upload that result back to the GPU and resume computing with your next kernel.

Since this is an appendix on atomics and we have gone to such lengths to explain
what a pain our original dot product algorithm is, you should see where we’re
heading. We intend to fix our dot product using atomics so the entire computa-
tion can stay on the GPU, leaving your CPU free to perform other tasks. Ideally,

251

A.1 DOT PRODUCT REVISITED

instead of exiting the kernel in step 3 and returning to the CPU in step 4, we want
each block to add its final result to a total in global memory. If each value were
added atomically, we would not have to worry about potential collisions or inde-
terminate results. Since we have already used an atomicAdd() operation in the
histogram operation, this seems like an obvious choice.

Unfortunately, prior to compute capability 2.0, atomicAdd()operated only
on integers. Although this might be fine if you plan to compute dot products of
vectors with integer components, it is significantly more common to use floating-
point components. However, the majority of NVIDIA hardware does not support
atomic arithmetic on floating-point numbers! But there’s a reasonable explana-
tion for this, so don’t throw your GPU in the garbage just yet.

Atomic operations on a value in memory guarantee only that each thread’s read-
modify-write sequence will complete without other threads reading or writing the
target value while in process. There is no stipulation about the order in which the
threads will perform their operations, so in the case of three threads performing
addition, sometimes the hardware will perform (A+B)+C and sometimes it
will compute A+(B+C). This is acceptable for integers because integer math is
associative, so (A+B)+C = A+(B+C). Floating-point arithmetic is not associa-
tive because of the rounding of intermediate results, so (A+B)+C often does
not equal A+(B+C). As a result, atomic arithmetic on floating-point values is of
dubious utility because it gives rise to nondeterministic results in a highly multi-
threaded environment such as on the GPU. There are many applications where
it is simply unacceptable to get two different results from two runs of an appli-
cation, so the support of floating-point atomic arithmetic was not a priority for
earlier hardware.

However, if we are willing to tolerate some nondeterminism in the results, we can
still accomplish the reduction entirely on the GPU. But we’ll first need to develop
a way to work around the lack of atomic floating-point arithmetic. The solution
will still use atomic operations, but not for the arithmetic itself.

A.1.1 ATOMIC LOCKS

The atomicAdd() function we used to build GPU histograms performed a
read-modify-write operation without interruption from other threads. At a low
level, you can imagine the hardware locking the target memory location while
this operation is underway, and while locked, no other threads can read or write
the value at the location. If we had a way of emulating this lock in our CUDA C
kernels, we could perform arbitrary operations on an associated memory location

AdvAnced AtomIcs

252

or data structure. The locking mechanism itself will operate exactly like a typical
cPu mutex. If you are unfamiliar with mutual exclusion (mutex), don’t fret. It’s not
any more complicated than the things you’ve already learned.

The basic idea is that we allocate a small piece memory to be used as a mutex.
The mutex will act like something of a traffic signal that governs access to some
resource. The resource could be a data structure, a buffer, or simply a memory
location we want to modify atomically. When a thread reads a 0 from the mutex,
it interprets this value as a “green light” indicating that no other thread is using
the memory. Therefore, the thread is free to lock the memory and make whatever
changes it desires, free of interference from other threads. To lock the memory
location in question, the thread writes a 1 to the mutex. This 1 will act as a “red
light” for potentially competing threads. The competing threads must then wait
until the owner has written a 0 to the mutex before they can attempt to modify the
locked memory.

A simple code sequence to accomplish this locking process might look like this:

 void lock(void) {

 if(*mutex == 0) {

 *mutex = 1; //store a 1 to lock

 }

 }

Unfortunately, there’s a problem with this code. Fortunately, it’s a familiar
problem: What happens if another thread writes a 1 to the mutex after our thread
has read the value to be zero? That is, both threads check the value at mutex
and see that it’s zero. They then both write a 1 to this location to signify to other
threads that the structure is locked and unavailable for modification. After doing
so, both threads think they own the associated memory or data structure and
begin making unsafe modifications. Catastrophe ensues!

The operation we want to complete is fairly simple: We need to compare the value
at mutex to 0 and store a 1 at that location if and only if the mutex was 0. To
accomplish this correctly, this entire operation needs to be performed atomically so
we know that no other thread can interfere while our thread examines and updates
the value at mutex. In CUDA C, this operation can be performed with the function
atomicCAS(), an atomic compare-and-swap. The function atomicCAS() takes
a pointer to memory, a value with which to compare the value at that location, and a
value to store in that location if the comparison is successful. Using this operation,
we can implement a GPU lock function as follows:

253

A.1 DOT PRODUCT REVISITED

 __device__ void lock(void) {

 while(atomicCAS(mutex, 0, 1) != 0);

 }

The call to atomicCAS() returns the value that it found at the address mutex.
As a result, the while() loop will continue to run until atomicCAS() sees a 0
at mutex. When it sees a 0, the comparison is successful, and the thread writes
a 1 to mutex. Essentially, the thread will spin in the while() loop until it has
successfully locked the data structure. We’ll use this locking mechanism to
implement our GPU hash table. But first, we dress the code up in a structure so it
will be cleaner to use in the dot product application:

struct Lock {

 int *mutex;

 Lock(void) {

 int state = 0;

 HANDLE_ERROR(cudaMalloc((void**)& mutex,

 sizeof(int)));

 HANDLE_ERROR(cudaMemcpy(mutex, &state, sizeof(int),

 cudaMemcpyHostToDevice));

 }

 ~Lock(void) {

 cudaFree(mutex);

 }

 __device__ void lock(void) {

 while(atomicCAS(mutex, 0, 1) != 0);

 }

 __device__ void unlock(void) {

 atomicExch(mutex, 1);

 }

};

Notice that we restore the value of mutex with atomicExch(mutex, 1).
The function atomicExch() reads the value that is located at mutex, exchanges

AdvAnced AtomIcs

254

it with the second argument (a 1 in this case), and returns the original value it
read. Why would we use an atomic function for this rather than the more obvious
method to reset the value at mutex?

 *mutex = 1;

If you’re expecting some subtle, hidden reason why this method fails, we hate to
disappoint you, but this would work as well. So, why not use this more obvious
method? Atomic transactions and generic global memory operations follow
different paths through the GPU. Using both atomics and standard global memory
operations could therefore lead to an unlock() seeming out of sync with a
subsequent attempt to lock() the mutex. The behavior would still be function-
ally correct, but to ensure consistently intuitive behavior from the application’s
perspective, it’s best to use the same pathway for all accesses to the mutex.
Because we’re required to use an atomic to lock the resource, we have chosen to
also use an atomic to unlock the resource.

A.1.2 DOT PRODUCT REDUX: ATOMIC LOCKS

The only piece of our earlier dot product example that we endeavor to change
is the final CPU-based portion of the reduction. In the previous section, we
described how we implement a mutex on the GPU. The Lock structure that
implements this mutex is located in lock.h and included at the beginning of our
improved dot product example:

#include "../common/book.h"

#include "lock.h"

#define imin(a,b) (a<b?a:b)

const int N = 33 * 1024 * 1024;

const int threadsPerBlock = 256;

const int blocksPerGrid =

 imin(32, (N+threadsPerBlock-1) / threadsPerBlock);

With two exceptions, the beginning of our dot product kernel is identical to the
kernel we used in Chapter 5. Both exceptions involve the kernel’s signature:

 __global__ void dot(Lock lock, float *a, float *b, float *c)

255

A.1 DOT PRODUCT REVISITED

In our updated dot product, we pass a Lock to the kernel in addition to input
vectors and the output buffer. The Lock will govern access to the output buffer
during the final accumulation step. The other change is not noticeable from the
signature but involves the signature. Previously, the float *c argument was a
buffer for N floats where each of the N blocks could store its partial result. This
buffer was copied back to the CPU to compute the final sum. Now, the argument
c no longer points to a temporary buffer but to a single floating-point value that
will store the dot product of the vectors in a and b. But even with these changes,
the kernel starts out exactly as it did in Chapter 5:

__global__ void dot(Lock lock, float *a,

 float *b, float *c) {

 __shared__ float cache[threadsPerBlock];

 int tid = threadIdx.x + blockIdx.x * blockDim.x;

 int cacheIndex = threadIdx.x;

 float temp = 0;

 while (tid < N) {

 temp += a[tid] * b[tid];

 tid += blockDim.x * gridDim.x;

 }

 // set the cache values

 cache[cacheIndex] = temp;

 // synchronize threads in this block

 __syncthreads();

 // for reductions, threadsPerBlock must be a power of 2

 // because of the following code

 int i = blockDim.x/2;

 while (i != 0) {

 if (cacheIndex < i)

 cache[cacheIndex] += cache[cacheIndex + i];

 __syncthreads();

 i /= 2;

 }

AdvAnced AtomIcs

256

At this point in execution, the 256 threads in each block have summed their 256
pairwise products and computed a single value that’s sitting in cache[0]. Each
thread block now needs to add its final value to the value at c. To do this safely,
we’ll use the lock to govern access to this memory location, so each thread needs
to acquire the lock before updating the value *c. After adding the block’s partial
sum to the value at c, it unlocks the mutex so other threads can accumulate their
values. After adding its value to the final result, the block has nothing remaining
to compute and can return from the kernel.

 if (cacheIndex == 0) {

 lock.lock();

 *c += cache[0];

 lock.unlock();

 }

}

The main() routine is very similar to our original implementation, though it does
have a couple differences. First, we no longer need to allocate a buffer for partial
results as we did in Chapter 5. We now allocate space for only a single floating-
point result:

int main(void) {

 float *a, *b, c = 0;

 float *dev_a, *dev_b, *dev_c;

 // allocate memory on the CPU side

 a = (float*)malloc(N*sizeof(float));

 b = (float*)malloc(N*sizeof(float));

 // allocate the memory on the GPU

 HANDLE_ERROR(cudaMalloc((void**)&dev_a,

 N*sizeof(float)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_b,

 N*sizeof(float)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_c,

 sizeof(float)));

257

A.1 DOT PRODUCT REVISITED

As we did in Chapter 5, we initialize our input arrays and copy them to the
GPU. But you’ll notice an additional copy in this example: We’re also copying
a zero to dev_c, the location that we intend to use to accumulate our final dot
product. Since each block wants to read this value, add its partial sum, and
store the result back, we need the initial value to be zero in order to get the
correct result.

 // fill in the host memory with data

 for (int i=0; i<N; i++) {

 a[i] = i;

 b[i] = i*2;

 }

 // copy the arrays 'a' and 'b' to the GPU

 HANDLE_ERROR(cudaMemcpy(dev_a, a, N*sizeof(float),

 cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMemcpy(dev_b, b, N*sizeof(float),

 cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMemcpy(dev_c, &c, sizeof(float),

 cudaMemcpyHostToDevice));

All that remains is declaring our Lock, invoking the kernel, and copying the
result back to the CPU.

 Lock lock;

 dot<<<blocksPerGrid,threadsPerBlock>>>(lock, dev_a,

 dev_b, dev_c);

 // copy c back from the GPU to the CPU

 HANDLE_ERROR(cudaMemcpy(&c, dev_c,

 sizeof(float),

 cudaMemcpyDeviceToHost));

AdvAnced AtomIcs

258

In Chapter 5, this is when we would do a final for() loop to add the partial
sums. Since this is done on the GPU using atomic locks, we can skip right to the
answer-checking and cleanup code:

 #define sum_squares(x) (x*(x+1)*(2*x+1)/6)

 printf("Does GPU value %.6g = %.6g?\n", c,

 2 * sum_squares((float)(N - 1)));

 // free memory on the GPU side

 cudaFree(dev_a);

 cudaFree(dev_b);

 cudaFree(dev_c);

 // free memory on the CPU side

 free(a);

 free(b);

}

Because there is no way to precisely predict the order in which each block will
add its partial sum to the final total, it is very likely (almost certain) that the final
result will be summed in a different order than the CPU will sum it. Because of
the nonassociativity of floating-point addition, it’s therefore quite probable that
the final result will be slightly different between the GPU and CPU. There is not
much that can be done about this without adding a nontrivial chunk of code to
ensure that the blocks acquire the lock in a deterministic order that matches the
summation order on the CPU. If you feel extraordinarily motivated, give this a try.
Otherwise, we’ll move on to see how these atomic locks can be used to imple-
ment a multithreaded data structure.

Implementing a Hash TableA.2
The hash table is one of the most important and commonly used data structures
in computer science, playing an important role in a wide variety of applications.
For readers not already familiar with hash tables, we’ll provide a quick primer
here. The study of data structures warrants more in-depth study than we intend
to provide, but in the interest of making forward progress, we will keep this brief.
If you already feel comfortable with the concepts behind hash tables, you should
skip to the hash table implementation in Section A.2.2: A CPU Hash Table.

259

A.2 IMPLEMENTING A HASH TABLE

HASH TABLE OVERVIEWA.2.1

A hash table is essentially a structure that is designed to store pairs of keys and
values. For example, you could think of a dictionary as a hash table. Every word in
the dictionary is a key, and each word has a definition associated with it. The defi-
nition is the value associated with the word, and thus every word and definition in
the dictionary form a key/value pair. For this data structure to be useful, though,
it is important that we minimize the time it takes to find a particular value if we’re
given a key. In general, this should be a constant amount of time. That is, the time
to look up a value given a key should be the same, regardless of how many key/
value pairs are in the hash table.

At an abstract level, our hash table will place values in “buckets” based on the
value’s corresponding key. The method by which we map keys to buckets is often
called the hash function. A good hash function will map the set of possible keys
uniformly across all the buckets because this will help satisfy our requirement
that it take constant time to find any value, regardless of the number of values
we’ve added to the hash table.

For example, consider our dictionary hash table. One obvious hash function would
involve using 26 buckets, one for each letter of the alphabet. This simple hash
function might simply look at the first letter of the key and put the value in one
of the 26 buckets based on this letter. Figure A.1 shows how this hash function
would assign few sample words.

Hash Buckets

Avocado

Camera

Baseball

Grasshopper

Electrical

B
A

D
C

F
E

H
G

Figure A.1 Hashing of words into buckets

AdvAnced AtomIcs

260

Given what we know about the distribution of words in the English language, this
hash function leaves much to be desired because it will not map words uniformly
across the 26 buckets. Some of the buckets will contain very few key/value pairs,
and some of the buckets will contain a large number of pairs. Accordingly, it
will take much longer to find the value associated with a word that begins with
a common letter such as S than it would take to find the value associated with a
word that begins with the letter X. Since we are looking for hash functions that
will give us constant-time retrieval of any value, this consequence is fairly unde-
sirable. An immense amount of research has gone into the study of hash func-
tions, but even a brief survey of these techniques is beyond the scope of this book.

The last component of our hash table data structure involves the buckets. If we
had a perfect hash function, every key would map to a different bucket. In this
case, we can simply store the key/value pairs in an array where each entry in the
array is what we’ve been calling a bucket. However, even with an excellent hash
function, in most situations we will have to deal with collisions. A collision occurs
when more than one key maps to a bucket, such as when we add both the words
avocado and aardvark to our dictionary hash table. The simplest way to store all of
the values that map to a given bucket is simply to maintain a list of values in the
bucket. When we encounter a collision, such as adding aardvark to a dictionary
that already contains avocado, we put the value associated with aardvark at the
end of the list we’re maintaining in the “A” bucket, as shown in Figure A.2.

After adding the word avocado in Figure A.2, the first bucket has a single key/
value pair in its list. Later in this imaginary application we add the word aardvark,
a word that collides with avocado because they both start with the letter A. You
will notice in Figure A.3 that it simply gets placed at the end of the list in the first
bucket:

avocado

avocado

Figure A.2 Inserting the word avocado into the hash table

261

A.2 IMPLEMENTING A HASH TABLE

aardvark

avocado aardvark

avocado

Figure A.3 Resolving the conflict when adding the word aardvark

Armed with some background on the notions of a hash function and collision reso-
lution, we’re ready to take a look at implementing our own hash table.

A CPU HASH TABLEA.2.2

As described in the previous section, our hash table will consist of essentially two
parts: a hash function and a data structure of buckets. Our buckets will be imple-
mented exactly as before: We will allocate an array of length N, and each entry in
the array holds a list of key/value pairs. Before concerning ourselves with a hash
function, we will take a look at the data structures involved:

#include "../common/book.h"

struct Entry {

 unsigned int key;

 void* value;

 Entry *next;

};

struct Table {

 size_t count;

 Entry **entries;

 Entry *pool;

 Entry *firstFree;

};

AdvAnced AtomIcs

262

As described in the introductory section, the structure Entry holds both a key
and a value. In our application, we will use unsigned integer keys to store our
key/value pairs. The value associated with this key can be any data, so we have
declared value as a void* to indicate this. Our application will primarily be
concerned with creating the hash table data structure, so we won’t actually store
anything in the value field. We have included it in the structure for complete-
ness, in case you want to use this code in your own applications. The last piece of
data in our hash table Entry is a pointer to the next Entry. After collisions, we’ll
have multiple entries in the same bucket, and we have decided to store these
entries as a list. So, each entry will point to the next entry in the bucket, thereby
forming a list of entries that have hashed to the same location in the table. The
last entry will have a NULL next pointer.

At its heart, the Table structure itself is an array of “buckets.” This bucket
array is just an array of length count, where each bucket in entries is just a
pointer to an Entry. To avoid incurring the complication and performance hit of
allocating memory every time we want to add an Entry to the table, the table
will maintain a large array of available entries in pool. The field firstFree
points to the next available Entry for use, so when we need to add an entry to
the table, we can simply use the Entry pointed to by firstFree and increment
that pointer. Note that this will also simplify our cleanup code because we can
free all of these entries with a single call to free(). If we had allocated every
entry as we went, we would have to walk through the table and free every entry
one by one.

After understanding the data structures involved, let’s take a look at some of the
other support code:

void initialize_table(Table &table, int entries,

 int elements) {

 table.count = entries;

 table.entries = (Entry**)calloc(entries, sizeof(Entry*));

 table.pool = (Entry*)malloc(elements * sizeof(Entry));

 table.firstFree = table.pool;

}

263

A.2 IMPLEMENTING A HASH TABLE

Table initialization consists primarily of allocating memory and clearing memory
for the bucket array entries. We also allocate storage for a pool of entries and
initialize the firstFree pointer to be the first entry in the pool array.

At the end of the application, we’ll want to free the memory we’ve allocated, so
our cleanup routine frees the bucket array and the pool of free entries:

void free_table(Table &table) {

 free(table.entries);

 free(table.pool);

}

In our introduction, we spoke quite a bit about the hash function. Specifically,
we discussed how a good hash function can make the difference between an
excellent hash table implementation and poor one. In this example, we’re using
unsigned integers as our keys, and we need to map these to the indices of our
bucket array. The simplest way to do this would be to select the bucket with an
index equal to the key. That is, we could store the entry e in table.entries[e.
key]. However, we have no way of guaranteeing that every key will be less than
the length of the array of buckets. Fortunately, this problem can be solved rela-
tively painlessly:

size_t hash(unsigned int key, size_t count) {

 return key % count;

}

If the hash function is so important, how can we get away with such a simple
one? Ideally, we want the keys to map uniformly across all the buckets in our
table, and all we’re doing here is taking the key modulo the array length. In
reality, hash functions may not normally be this simple, but because this is just
an example program, we will be randomly generating our keys. If we assume
that the random number generator generates values roughly uniformly, this
hash function should map these keys uniformly across all of the buckets of the
hash table. In your own hash table implementation, you may require a more
complicated hash function.

AdvAnced AtomIcs

264

Having seen the hash table structures and the hash function, we’re ready to look
at the process of adding a key/value pair to the table. The process involves three
basic steps:

Compute the hash function on the input key to determine the new entry’s 1.
bucket.

Take a preallocated 2. Entry from the pool and initialize its key and value
fields.

Insert the entry at the front of the proper bucket’s list.3.

We translate these steps to code in a fairly straightforward way.

void add_to_table(Table &table, unsigned int key, void* value)
{

 //Step 1

 size_t hashValue = hash(key, table.count);

 //Step 2

 Entry *location = table.firstFree++;

 location->key = key;

 location->value = value;

 //Step 3

 location->next = table.entries[hashValue];

 table.entries[hashValue] = location;

}

If you have never seen linked lists (or it’s been a while), step 3 may be tricky
to understand at first. The existing list has its first node stored at table.
entries[hashValue]. With this in mind, we can insert a new node at the head
of the list in two steps: First, we set our new entry’s next pointer to point to the
first node in the existing list. Then, we store the new entry in the bucket array so it
becomes the first node of the new list.

265

A.2 IMPLEMENTING A HASH TABLE

Since it’s a good idea to have some idea whether the code you’ve written works,
we’ve implemented a routine to perform a sanity check on a hash table. The
check involves first walking through the table and examining every node.
We compute the hash function on the node’s key and confirm that the node
is stored in the correct bucket. After checking every node, we verify that the
number of nodes actually in the table is indeed equal to the number of elements
we intended to add to the table. If these numbers don’t agree, then either
we’ve added a node accidentally to multiple buckets or we haven’t inserted it
correctly.

#define SIZE (100*1024*1024)

#define ELEMENTS (SIZE / sizeof(unsigned int))

void verify_table(const Table &table) {

 int count = 0;

 for (size_t i=0; i<table.count; i++) {

 Entry *current = table.entries[i];

 while (current != NULL) {

 ++count;

 if (hash(current->value, table.count) != i)

 printf("%d hashed to %ld, but was located "

 "at %ld\n", current->value,

 hash(current->value, table.count), i);

 current = current->next;

 }

 }

 if (count != ELEMENTS)

 printf("%d elements found in hash table. Should be %ld\n",

 count, ELEMENTS);

 else

 printf("All %d elements found in hash table.\n", count);

}

AdvAnced AtomIcs

266

With all the infrastructure code out of the way, we can look at main(). As with
many of this book’s examples, a lot of the heavy lifting has been done in helper
functions, so we hope that main() will be relatively easy to follow:

#define HASH_ENTRIES 1024

int main(void) {

 unsigned int *buffer =

 (unsigned int*)big_random_block(SIZE);

 clock_t start, stop;

 start = clock();

 Table table;

 initialize_table(table, HASH_ENTRIES, ELEMENTS);

 for (int i=0; i<ELEMENTS; i++) {

 add_to_table(table, buffer[i], (void*)NULL);

 }

 stop = clock();

 float elapsedTime = (float)(stop - start) /

 (float)CLOCKS_PER_SEC * 1000.0f;

 printf("Time to hash: %3.1f ms\n", elapsedTime);

 verify_table(table);

 free_table(table);

 free(buffer);

 return 0;

}

As you can see, we start by allocating a big chunk of random numbers. These
randomly generated unsigned integers will be the keys we insert into our
hash table. After generating the numbers, we read the system time in order to
measure the performance of our implementation. We initialize the hash table and
then insert each random key into the table using a for() loop. After adding all
the keys, we read the system time again to compute the elapsed time to initialize
and add the keys. Finally, we verify the hash table with our sanity check routine
and free the buffers we’ve allocated.

267

A.2 IMPLEMENTING A HASH TABLE

You probably noticed that we are using NULL as the value for every key/value pair.
In a typical application, you would likely store some useful data with the key, but
because we are primarily concerned with the hash table implementation itself,
we’re storing a meaningless value with each key.

A.2.3 MULTITHREADED HASH TABLE

There are some assumptions built into our CPU hash table that will no longer be
valid when we move to the GPU. First, we have assumed that only one node can
be added to the table at a time in order to make the addition of a node simpler. If
more than one thread were trying to add a node to the table at once, we could end
up with problems similar to the multithreaded addition problems in the example
from Chapter 9.

For example, let’s revisit our “avocado and aardvark” example and imagine that
threads A and B are trying to add these entries to the table. Thread A computes a
hash function on avocado, and thread B computes the function on aardvark. They
both decide their keys belong in the same bucket. To add the new entry to the list,
thread A and B start by setting their new entry’s next pointer to the first node of
the existing list as in Figure A.4.

Then, both threads try to replace the entry in the bucket array with their new
entry. However, the thread that finishes second is the only thread that has its
update preserved because it overwrites the work of the previous thread. So
consider the scenario where thread A replaces the entry altitude with its entry for
avocado. Immediately after finishing, thread B replaces what it believe to be the
entry for altitude with its entry for aardvark. Unfortunately, it’s replacing avocado
instead of altitude, resulting in the situation illustrated in Figure A.5.

aardvark

altitude audience

avocado

Figure A.4 Multiple threads attempting to add a node to the same bucket

AdvAnced AtomIcs

268

aardvark altitude audience

avocado

Figure A.5 The hash table after an unsuccessful concurrent modification by
two threads

Thread A’s entry is tragically “floating” outside of the hash table. Fortunately, our
sanity check routine would catch this and alert us to the presence of a problem
because it would count fewer nodes than we expected. But we still need to
answer this question: How do we build a hash table on the GPU?! The key obser-
vation here involves the fact that only one thread can safely make modifications
to a bucket at a time. This is similar to our dot product example where only one
thread at a time could safely add its value to the final result. If each bucket had
an atomic lock associated with it, we could ensure that only a single thread was
making changes to a given bucket at a time.

A.2.4 A GPU HASH TABLE

Armed with a method to ensure safe multithreaded access to the hash table, we
can proceed with a GPU implementation of the hash table application we wrote
in Section A.2.2: A CPU Hash Table. We’ll need to include lock.h, the imple-
mentation of our GPU Lock structure from Section A.1.1 Atomic Locks, and we’ll
need to declare the hash function as a __device__ function. Aside from these
changes, the fundamental data structures and hash function are identical to the
CPU implementation.

269

A.2 IMPLEMENTING A HASH TABLE

#include “../common/book.h”

#include “lock.h”

struct Entry {

 unsigned int key;

 void* value;

 Entry *next;

};

struct Table {

 size_t count;

 Entry **entries;

 Entry *pool;

};

__device__ __host__ size_t hash(unsigned int value,

 size_t count) {

 return value % count;

}

Initializing and freeing the hash table consists of the same steps as we performed
on the CPU, but as with previous examples, we use CUDA runtime functions to
accomplish this. We use cudaMalloc() to allocate a bucket array and a pool of
entries, and we use cudaMemset() to set the bucket array entries to zero. To
free the memory upon application completion, we use cudaFree().

void initialize_table(Table &table, int entries,

 int elements) {

 table.count = entries;

 HANDLE_ERROR(cudaMalloc((void**)&table.entries,

 entries * sizeof(Entry*)));

 HANDLE_ERROR(cudaMemset(table.entries, 0,

 entries * sizeof(Entry*)));

 HANDLE_ERROR(cudaMalloc((void**)&table.pool,

 elements * sizeof(Entry)));

}

AdvAnced AtomIcs

270

void free_table(Table &table) {

 cudaFree(table.pool);

 cudaFree(table.entries);

}

We used a routine to check our hash table for correctness in the CPU implemen-
tation. We need a similar routine for the GPU version, so we have two options. We
could write a GPU-based version of verify_table(), or we could use the same
code we used in the CPU version and add a function that copies a hash table from
the GPU to the CPU. Although either option gets us what we need, the second
option seems superior for two reasons: First, it involves reusing our CPU version
of verify_table(). As with code reuse in general, this saves time and ensures
that future changes to the code would need to be made in only one place for both
versions of the hash table. Second, implementing a copy function will uncover an
interesting problem, the solution to which may be very useful to you in the future.

As promised, verify_table() is identical to the CPU implementation and is
reprinted here for your convenience:

#define SIZE (100*1024*1024)

#define ELEMENTS (SIZE / sizeof(unsigned int))

#define HASH_ENTRIES 1024

void verify_table(const Table &dev_table) {

 Table table;

 copy_table_to_host(dev_table, table);

 int count = 0;

 for (size_t i=0; i<table.count; i++) {

 Entry *current = table.entries[i];

 while (current != NULL) {

 ++count;

 if (hash(current->value, table.count) != i)

 printf("%d hashed to %ld, but was located "

 "at %ld\n", current->value,

 hash(current->value, table.count), i);

 current = current->next;

 }

 }

271

A.2 IMPLEMENTING A HASH TABLE

 if (count != ELEMENTS)

 printf(“%d elements found in hash table. Should be %ld\n”,

 count, ELEMENTS);

 else

 printf(“All %d elements found in hash table.\n”, count);

 free(table.pool);

 free(table.entries);

}

Since we chose to reuse our CPU implementation of verify_table(), we need a
function to copy the table from GPU memory to host memory. There are three steps
to this function, two relatively obvious steps and a third, trickier step. The first two
steps involve allocating host memory for the hash table data and performing a copy
of the GPU data structures into this memory with cudaMemcpy(). We have done
this many times previously, so this should come as no surprise.

void copy_table_to_host(const Table &table, Table &hostTable) {

 hostTable.count = table.count;

 hostTable.entries = (Entry**)calloc(table.count,

 sizeof(Entry*));

 hostTable.pool = (Entry*)malloc(ELEMENTS *

 sizeof(Entry));

 HANDLE_ERROR(cudaMemcpy(hostTable.entries, table.entries,

 table.count * sizeof(Entry*),

 cudaMemcpyDeviceToHost));

 HANDLE_ERROR(cudaMemcpy(hostTable.pool, table.pool,

 ELEMENTS * sizeof(Entry),

 cudaMemcpyDeviceToHost));

The tricky portion of this routine involves the fact that some of the data we have
copied are pointers. We cannot simply copy these pointers to the host because
they are addresses on the GPU; they will no longer be valid pointers on the host.
However, the relative offsets of the pointers will still be valid. Every GPU pointer

AdvAnced AtomIcs

272

to an Entry points somewhere within the table.pool[] array, but for the hash
table to be usable on the host, we need them to point to the same Entry in the
hostTable.pool[] array.

Given a GPU pointer X, we therefore need to add the pointer’s offset from table.
pool to hostTable.pool to get a valid host pointer. That is, the new pointer
should be computed as follows:

 (X - table.pool) + hostTable.pool

We perform this update for every Entry pointer we’ve copied from the GPU: the
Entry pointers in hostTable.entries and the next pointer of every Entry
in the table’s pool of entries:

 for (int i=0; i<table.count; i++) {

 if (hostTable.entries[i] != NULL)

 hostTable.entries[i] =

 (Entry*)((size_t)hostTable.entries[i] -

 (size_t)table.pool + (size_t)hostTable.pool);

 }

 for (int i=0; i<ELEMENTS; i++) {

 if (hostTable.pool[i].next != NULL)

 hostTable.pool[i].next =

 (Entry*)((size_t)hostTable.pool[i].next -

 (size_t)table.pool + (size_t)hostTable.pool);

 }

}

Having seen the data structures, hash function, initialization, cleanup, and verifi-
cation code, the most important piece remaining is the one that actually involves
CUDA C atomics. As arguments, the add_to_table() kernel will take an array
of keys and values to be added to the hash table. Its next argument is the hash
table itself, and the final argument is an array of locks that will be used to lock
each of the table’s buckets. Since our input is two arrays that our threads will
need to index, we also need our all-too-common index linearization:

__global__ void add_to_table(unsigned int *keys, void **values,

 Table table, Lock *lock) {

 int tid = threadIdx.x + blockIdx.x * blockDim.x;

 int stride = blockDim.x * gridDim.x;

273

A.2 IMPLEMENTING A HASH TABLE

Our threads walk through the input arrays exactly like they did in the dot product
example. For each key in the keys[] array, the thread will compute the hash
function in order to determine which bucket the key/value pair belongs in. After
determining the target bucket, the thread locks the bucket, adds its key/value
pair, and unlocks the bucket.

 while (tid < ELEMENTS) {

 unsigned int key = keys[tid];

 size_t hashValue = hash(key, table.count);

 for (int i=0; i<32; i++) {

 if ((tid % 32) == i) {

 Entry *location = &(table.pool[tid]);

 location->key = key;

 location->value = values[tid];

 lock[hashValue].lock();

 location->next = table.entries[hashValue];

 table.entries[hashValue] = location;

 lock[hashValue].unlock();

 }

 }

 tid += stride;

 }

}

There is something remarkably peculiar about this bit of code, however. The
for() loop and subsequent if() statement seem decidedly unnecessary. In
Chapter 6, we introduced the concept of a warp. If you’ve forgotten, a warp is a
collection of 32 threads that execute together in lockstep. Although the nuances
of how this gets implemented in the GPU are beyond the scope of this book, only
one thread in the warp can acquire the lock at a time, and we will suffer many a
headache if we let all 32 threads in the warp contend for the lock simultaneously.
In this situation, we’ve found that it’s best to do some of the work in software and
simply walk through each thread in the warp, giving each a chance to acquire the
data structure’s lock, do its work, and subsequently release the lock.

The flow of main() should appear identical to the CPU implementation. We
start by allocating a large chunk of random data for our hash table keys. Then we
create start and stop CUDA events and record the start event for our performance

AdvAnced AtomIcs

274

measurements. We proceed to allocate GPU memory for our array of random
keys, copy the array up to the device, and initialize our hash table:

int main(void) {

 unsigned int *buffer =

 (unsigned int*)big_random_block(SIZE);

 cudaEvent_t start, stop;

 HANDLE_ERROR(cudaEventCreate(&start));

 HANDLE_ERROR(cudaEventCreate(&stop));

 HANDLE_ERROR(cudaEventRecord(start, 0));

 unsigned int *dev_keys;

 void **dev_values;

 HANDLE_ERROR(cudaMalloc((void**)&dev_keys, SIZE));

 HANDLE_ERROR(cudaMalloc((void**)&dev_values, SIZE));

 HANDLE_ERROR(cudaMemcpy(dev_keys, buffer, SIZE,

 cudaMemcpyHostToDevice));

 // copy the values to dev_values here

 // filled in by user of this code example

 Table table;

 initialize_table(table, HASH_ENTRIES, ELEMENTS);

The last step of preparation to build our hash table involves preparing locks for
the hash table’s buckets. We allocate one lock for each bucket in the hash table.
Conceivably we could save a lot of memory by using only one lock for the whole
table. But doing so would utterly destroy performance because every thread
would have to compete for the table lock whenever a group of threads tries to
simultaneously add entries to the table. So we declare an array of locks, one for
every bucket in the array. We then allocate a GPU array for the locks and copy
them up to the device:

275

A.2 IMPLEMENTING A HASH TABLE

 Lock lock[HASH_ENTRIES];

 Lock *dev_lock;

 HANDLE_ERROR(cudaMalloc((void**)&dev_lock,

 HASH_ENTRIES * sizeof(Lock)));

 HANDLE_ERROR(cudaMemcpy(dev_lock, lock,

 HASH_ENTRIES * sizeof(Lock),

 cudaMemcpyHostToDevice));

The rest of main() is similar to the CPU version: We add all of our keys to the
hash table, stop the performance timer, verify the correctness of the hash table,
and clean up after ourselves:

 add_to_table<<<60,256>>>(dev_keys, dev_values,

 table, dev_lock);

 HANDLE_ERROR(cudaEventRecord(stop, 0));

 HANDLE_ERROR(cudaEventSynchronize(stop));

 float elapsedTime;

 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,

 start, stop));

 printf("Time to hash: %3.1f ms\n", elapsedTime);

 verify_table(table);

 HANDLE_ERROR(cudaEventDestroy(start));

 HANDLE_ERROR(cudaEventDestroy(stop));

 free_table(table);

 cudaFree(dev_lock);

 cudaFree(dev_keys);

 cudaFree(dev_values);

 free(buffer);

 return 0;

}

AdvAnced AtomIcs

276

A.2.5 HASH TABLE PERFORMANCE

Using an Intel Core 2 Duo, the CPU hash table example in Section A.2.2: A CPU
Hash Table takes 360ms to build a hash table from 100MB of data. The code
was built with the option -O3 to ensure maximally optimized CPU code. The
multithreaded GPU hash table in Section A.2.4: A GPU Hash Table takes 375ms
to complete the same task. Differing by less than 5 percent, these are roughly
comparable execution times, which raises an excellent question: Why would such
a massively parallel machine such as a GPU get beaten by a single-threaded CPU
version of the same application? Frankly, this is because GPUs were not designed
to excel at multithreaded access to complex data structures such as a hash table.
For this reason, there are very few performance motivations to build a data struc-
ture such as a hash table on the GPU. So if all your application needs to do is build
a hash table or similar data structure, you would likely be better off doing this on
your CPU.

On the other hand, you will sometimes find yourself in a situation where a long
computation pipeline involves one or two stages that the GPU does not enjoy a
performance advantage over comparable CPU implementations. In these situa-
tions, you have three (somewhat obvious) options:

Perform every step of the pipeline on the GPU•

Perform every step of the pipeline on the CPU•

Perform some pipeline steps on the GPU and some on the CPU•

The last option sounds like the best of both worlds; however, it implies that you
will need to synchronize your CPU and GPU at any point in your application where
you want to move computation from the GPU to CPU or back. This synchronization
and subsequent data transfer between host and GPU can often kill any perfor-
mance advantage you might have derived from employing a hybrid approach in
the first place.

In such a situation, it may be worth your time to perform every phase of compu-
tation on the GPU, even if the GPU is not ideally suited for some steps of the
algorithm. In this vein, the GPU hash table can potentially prevent a CPU/GPU
synchronization point, minimize data transfer between the host and GPU and free
the CPU to perform other computations. In such a scenario, it’s possible that the
overall performance of a GPU implementation would exceed a CPU/GPU hybrid
approach, despite the GPU being no faster than the CPU on certain steps (or
potentially even getting trounced by the CPU in some cases).

277

A.3 APPENDIX REVIEW

Appendix ReviewA.3
We saw how to use atomic compare-and-swap operations to implement a GPU
mutex. Using a lock built with this mutex, we saw how to improve our original dot
product application to run entirely on the GPU. We carried this idea further by
implementing a multithreaded hash table that used an array of locks to prevent
unsafe simultaneous modifications by multiple threads. In fact, the mutex we
developed could be used for any manner of parallel data structures, and we hope
that you’ll find it useful in your own experimentation and application develop-
ment. Of course, the performance of applications that use the GPU to imple-
ment mutex-based data structures needs careful study. Our GPU hash table gets
beaten by a single-threaded CPU version of the same code, so it will make sense
to use the GPU for this type of application only in certain situations. There is no
blanket rule that can be used to determine whether a GPU-only, CPU-only, or
hybrid approach will work best, but knowing how to use atomics will allow you to
make that decision on a case-by-case basis.

This page intentionally left blank

279

Index

A
add() function, CPU vector sums, 40–44
add_to_table() kernel, GPU hash table, 272
ALUs (arithmetic logic units)

CUDA Architecture, 7
using constant memory, 96

anim_and_exit() method, GPU ripples, 70
anim_gpu() routine, texture memory, 123, 129
animation

GPU Julia Set example, 50–57
GPU ripple using threads, 69–74
heat transfer simulation, 121–125

animExit(), 149
asynchronous call
cudaMemcpyAsync()as, 197
using events with, 109

atomic locks
GPU hash table, 274–275
overview of, 251–254

atomicAdd()
atomic locks, 251–254
histogram kernel using global memory, 180
not supporting floating-point numbers, 251

atomicCAS(), GPU lock, 252–253
atomicExch(), GPU lock, 253–254
atomics, 163–184

advanced, 249–277
compute capability of NVIDIA GPUs, 164–167
dot product and, 248–251
hash tables. see hash tables
histogram computation, CPU, 171–173
histogram computation, GPU, 173–179
histogram computation, overview, 170
histogram kernel using global memory atomics,

179–181
histogram kernel using shared/global memory

atomics, 181–183
for minimum compute capability, 167–168

locks, 251–254
operations, 168–170
overview of, 163–164, 249
summary review, 183–184, 277

B
bandwidth, constant memory saving, 106–107
Basic Linear Algebra Subprograms (BLAS), CUBLAS

library, 239–240
bin counts, CPU histogram computation, 171–173
BLAS (Basic Linear Algebra Subprograms), CUBLAS

library, 239–240
blend_kernel()

2D texture memory, 131–133
texture memory, 127–129

blockDim variable
2D texture memory, 132–133
dot product computation, 76–78, 85
dot product computation, incorrect

optimization, 88
dot product computation with atomic locks,

255–256
dot product computation, zero-copy memory,

221–222
GPU hash table implementation, 272
GPU ripple using threads, 72–73
GPU sums of a longer vector, 63–65
GPU sums of arbitrarily long vectors, 66–67
graphics interoperability, 145
histogram kernel using global memory atomics,

179–180
histogram kernel using shared/global memory

atomics, 182–183
multiple CUDA streams, 200
ray tracing on GPU, 102
shared memory bitmap, 91
temperature update computation, 119–120

INDEX

280

blockIdx variable
2D texture memory, 132–133
defined, 57
dot product computation, 76–77, 85
dot product computation with atomic locks,

255–256
dot product computation, zero-copy memory,

221–222
GPU hash table implementation, 272
GPU Julia Set, 53
GPU ripple using threads, 72–73
GPU sums of a longer vector, 63–64
GPU vector sums, 44–45
graphics interoperability, 145
histogram kernel using global memory atomics,

179–180
histogram kernel using shared/global memory

atomics, 182–183
multiple CUDA streams, 200
ray tracing on GPU, 102
shared memory bitmap, 91
temperature update computation, 119–121

blocks
defined, 57
GPU Julia Set, 51
GPU vector sums, 44–45
hardware-imposed limits on, 46
splitting into threads. see parallel blocks, splitting

into threads
breast cancer, CUDA applications for, 8–9
bridges, connecting multiple GPUs, 224
buckets, hash table

concept of, 259–260
GPU hash table implementation, 269–275
multithreaded hash tables and, 267–268

bufferObj variable
creating GPUAnimBitmap, 149
registering with CUDA runtime, 143
registering with cudaGraphicsGL-

RegisterBuffer(), 151
setting up graphics interoperability, 141, 143–144

buffers, declaring shared memory, 76–77

C
cache[] shared memory variable

declaring buffer of shared memory named, 76–77
dot product computation, 79–80, 85–86
dot product computation with atomic locks,

255–256
cacheIndex, incorrect dot product optimization, 88
caches, texture, 116–117

callbacks, GPUAnimBitmap user registration
for, 149

Cambridge University, CUDA applications, 9–10
camera

ray tracing concepts, 97–98
ray tracing on GPU, 99–104

cellular phones, parallel processing in, 2
central processing units. see CPUs (central

processing units)
cleaning agents, CUDA applications for, 10–11
clickDrag(), 149
clock speed, evolution of, 2–3
code, breaking assumptions, 45–46
code resources, CUDa, 246–248
collision resolution, hash tables, 260–261
color

CPU Julia Set, 48–49
early days of GPU computing, 5–6
ray tracing concepts, 98

compiler
for minimum compute capability, 167–168
standard C, for GPU code, 18–19

complex numbers
defining generic class to store, 49–50
storing with single-precision floating-point

components, 54
computational fluid dynamics, CUDA applications

for, 9–10
compute capability

compiling for minimum, 167–168
cudaChooseDevice()and, 141
defined, 164
of NVIDIA GPUs, 164–167
overview of, 141–142

computer games, 3D graphic development for, 4–5
constant memory

accelerating applications with, 95
measuring performance with events, 108–110
measuring ray tracer performance, 110–114
overview of, 96
performance with, 106–107
ray tracing introduction, 96–98
ray tracing on GPU, 98–104
ray tracing with, 104–106
summary review, 114

__constant__function
declaring memory as, 104–106
performance with constant memory, 106–107

copy_const_kernel() kernel
2D texture memory, 133
using texture memory, 129–130

INDEX

281

copy_constant_kernel(), computing
 temperature updates, 119–121

CPUAnimBitmap class, creating GPU ripple, 69–70,
147–148

CPUs (central processing units)
evolution of clock speed, 2–3
evolution of core count, 3
freeing memory. see free(), C language
hash tables, 261–267
histogram computation on, 171–173
as host in this book, 23
thread management and scheduling in, 72
vector sums, 39–41
verifying GPU histogram using reverse CPU

histogram, 175–176
CUBLAS library, 239–240
cuComplex structure, CPU Julia Set, 48–49
cuComplex structure, GPU Julia Set, 53–55
CUDA, Supercomputing for the Masses , 245–246
CUDA Architecture

computational fluid dynamic applications, 9–10
defined, 7
environmental science applications, 10–11
first application of, 7
medical imaging applications, 8–9
resource for understanding, 244–245
using, 7–8

cudA c
computational fluid dynamic applications, 9–10
CUDA development toolkit, 16–18
CUDA-enabled graphics processor, 14–16
debugging, 241–242
development environment setup. see development

environment setup
development of, 7
environmental science applications, 10–11
getting started, 13–20
medical imaging applications, 8–9
NVIDIA device driver, 16
on multiple GPUs. see GPUs (graphics processing

units), multi-system
overview of, 21–22
parallel programming in. see parallel

programming, CUDA
passing parameters, 24–27
querying devices, 27–33
standard C compiler, 18–19
summary review, 19, 35
using device properties, 33–35
writing first program, 22–24

CUDA Data Parallel Primitives Library (CUDPP), 246
CUDA event API, and performance, 108–110

CUDA Memory Checker, 242
CUDA streams

GPU work scheduling with, 205–208
multiple, 198–205, 208–210
overview of, 192
single, 192–198
summary review, 211

CUDA Toolkit, 238–240
in development environment, 16–18

CUDA tools
CUBLAS library, 239–240
CUDA Toolkit, 238–239
CUFFT library, 239
debugging CUDA C, 241–242
GPU Computing SDK download, 240–241
NVIDIA Performance Primitives, 241
overview of, 238
Visual Profiler, 243–244

CUDA Zone, 167
cuda_malloc_test(), page-locked memory, 189
cudaBindTexture(), texture memory, 126–127
cudaBindTexture2D(), texture memory, 134
cudaChannelFormatDesc(), binding 2D

textures, 134
cudaChooseDevice()

defined, 34
GPUAnimBitmap initialization, 150
for valid ID, 141–142

cudaD39SetDirect3DDevice(), DirectX
interoperability, 160–161

cudaDeviceMapHost(), zero-copy memory dot
product, 221

cudaDeviceProp structure
cudaChooseDevice()working with, 141
multiple CUDA streams, 200
overview of, 28–31
single CUDA streams, 193–194
using device properties, 34

CUDA-enabled graphics processors, 14–16
cudaEventCreate()

2D texture memory, 134
CUDA streams, 192, 194, 201
GPU hash table implementation, 274–275
GPU histogram computation, 173, 177
measuring performance with events, 108–110, 112
page-locked host memory application, 188–189
performing animation with GPUAnimBitmap, 158
ray tracing on GPU, 100
standard host memory dot product, 215
texture memory, 124
zero-copy host memory, 215, 217

INDEX

282

cudaEventDestroy()
defined, 112
GPU hash table implementation, 275
GPU histogram computation, 176, 178
heat transfer simulation, 123, 131, 137
measuring performance with events, 111–113
page-locked host memory, 189–190
texture memory, 136
zero-copy host memory, 217, 220

cudaEventElapsedTime()
2D texture memory, 130
CUDA streams, 198, 204
defined, 112
GPU hash table implementation, 275
GPU histogram computation, 175, 178
heat transfer simulation animation, 122
heat transfer using graphics interoperability, 157
page-locked host memory, 188, 190
standard host memory dot product, 216
zero-copy memory dot product, 219

cudaEventRecord()
CUDA streams, 194, 198, 201
CUDA streams and, 192
GPU hash table implementation, 274–275
GPU histogram computation, 173, 175, 177
heat transfer simulation animation, 122
heat transfer using graphics interoperability,

156–157
measuring performance with events, 108–109
measuring ray tracer performance, 110–113
page-locked host memory, 188–190
ray tracing on GPU, 100
standard host memory dot product, 216
using texture memory, 129–130

cudaEventSynchronize()
2D texture memory, 130
GPU hash table implementation, 275
GPU histogram computation, 175, 178
heat transfer simulation animation, 122
heat transfer using graphics interoperability, 157
measuring performance with events, 109, 111, 113
page-locked host memory, 188, 190
standard host memory dot product, 216

cudaFree()
allocating portable pinned memory, 235
CPU vector sums, 42
CUDA streams, 198, 205
defined, 26–27
dot product computation, 84, 87
dot product computation with atomic locks, 258
GPU hash table implementation, 269–270, 275
GPU ripple using threads, 69
GPU sums of arbitrarily long vectors, 69

multiple CPUs, 229
page-locked host memory, 189–190
ray tracing on GPU, 101
ray tracing with constant memory, 105
shared memory bitmap, 91
standard host memory dot product, 217

cudaFreeHost()
allocating portable pinned memory, 233
CUDA streams, 198, 204
defined, 190
freeing buffer allocated with

cudaHostAlloc(), 190
zero-copy memory dot product, 220

CUDA-GDB debugging tool, 241–242
cudaGetDevice()

CUDA streams, 193, 200
device properties, 34
zero-copy memory dot product, 220

cudaGetDeviceCount()
device properties, 34
getting count of CUDA devices, 28
multiple CPUs, 224–225

cudaGetDeviceProperties()
determining if GPU is integrated or discrete, 223
multiple CUDA streams, 200
querying devices, 33–35
zero-copy memory dot product, 220

cudaGLSetGLDevice()
graphics interoperation with OpenGL, 150
preparing CUDA to use OpenGL driver, 142

cudaGraphicsGLRegisterBuffer(), 143, 151
cudaGraphicsMapFlagsNone(), 143
cudaGraphicsMapFlagsReadOnly(), 143
cudaGraphicsMapFlagsWriteDiscard(), 143
cudaGraphicsUnapResources(), 144
cudaHostAlloc()

CUDA streams, 195, 202
malloc() versus, 186–187
page-locked host memory application, 187–192
zero-copy memory dot product, 217–220

cudaHostAllocDefault()
CUDA streams, 195, 202
default pinned memory, 214
page-locked host memory, 189–190

cudaHostAllocMapped()flag
default pinned memory, 214
portable pinned memory, 231
zero-copy memory dot product, 217–218

cudaHostAllocPortable(), portable pinned
memory, 230–235

cudaHostAllocWriteCombined()flag
portable pinned memory, 231
zero-copy memory dot product, 217–218

INDEX

283

cudaHostGetDevicePointer()
portable pinned memory, 234
zero-copy memory dot product, 218–219

cudaMalloc(), 124
2D texture memory, 133–135
allocating device memory using, 26
CPU vector sums application, 42
CUDA streams, 194, 201–202
dot product computation, 82, 86
dot product computation, standard host

memory, 215
dot product computation with atomic locks, 256
GPU hash table implementation, 269, 274–275
GPU Julia Set, 51
GPU lock function, 253
GPU ripple using threads, 70
GPU sums of arbitrarily long vectors, 68
measuring ray tracer performance, 110, 112
portable pinned memory, 234
ray tracing on GPU, 100
ray tracing with constant memory, 105
shared memory bitmap, 90
using multiple CPUs, 228
using texture memory, 127

cuda-memcheck, 242
cudaMemcpy()

2D texture binding, 136
copying data between host and device, 27
CPU vector sums application, 42
dot product computation, 82–83, 86
dot product computation with atomic locks, 257
GPU hash table implementation, 270, 274–275
GPU histogram computation, 174–175
GPU Julia Set, 52
GPU lock function implementation, 253
GPU ripple using threads, 70
GPU sums of arbitrarily long vectors, 68
heat transfer simulation animation, 122–125
measuring ray tracer performance, 111
page-locked host memory and, 187, 189
ray tracing on GPU, 101
standard host memory dot product, 216
using multiple CPUs, 228–229

cudaMemcpyAsync()
GPU work scheduling, 206–208
multiple CUDA streams, 203, 208–210
single CUDA streams, 196
timeline of intended application execution using

multiple streams, 199
cudaMemcpyDeviceToHost()

CPU vector sums application, 42
dot product computation, 82, 86–87
GPU hash table implementation, 270
GPU histogram computation, 174–175

GPU Julia Set, 52
GPU sums of arbitrarily long vectors, 68
multiple CUDA streams, 204
page-locked host memory, 190
ray tracing on GPU, 101
shared memory bitmap, 91
standard host memory dot product, 216
using multiple CPUs, 229

cudaMemcpyHostToDevice()
CPU vector sums application, 42
dot product computation, 86
GPU sums of arbitrarily long vectors, 68
implementing GPU lock function, 253
measuring ray tracer performance, 111
multiple CPUs, 228
multiple CUDA streams, 203
page-locked host memory, 189
standard host memory dot product, 216

cudaMemcpyToSymbol(), constant memory, 105–106
cudaMemset()

GPU hash table implementation, 269
GPU histogram computation, 174

CUDA.NET project, 247
cudaSetDevice()

allocating portable pinned memory, 231–232,
233–234

using device properties, 34
using multiple CPUs, 227–228

cudaSetDeviceFlags()
allocating portable pinned memory, 231, 234
zero-copy memory dot product, 221

cudaStreamCreate(), 194, 201
cudaStreamDestroy(), 198, 205
cudaStreamSynchronize(), 197–198, 204
cudaThreadSynchronize(), 219
cudaUnbindTexture(), 2D texture memory,

136–137
CUDPP (CUDA Data Parallel Primitives Library), 246
CUFFT library, 239
CULAtools, 246
current animation time, GPU ripple using threads,

72–74

D
debugging CUDA C, 241–242
detergents, CUDA applications, 10–11
dev_bitmap pointer, GPU Julia Set, 51
development environment setup

CUDA Toolkit, 16–18
CUDA-enabled graphics processor, 14–16
NVIDIA device driver, 16
standard C compiler, 18–19
summary review, 19

INDEX

284

device drivers, 16
device overlap, GPU, 194, 198–199
__device__function

GPU hash table implementation, 268–275
GPU Julia Set, 54

devices
getting count of CUDA, 28
GPU vector sums, 41–46
passing parameters, 25–27
querying, 27–33
use of term in this book, 23
using properties of, 33–35

devPtr, graphics interoperability, 144
dim3 variable grid, GPU Julia Set, 51–52
DIMxDIM bitmap image, GPU Julia Set, 49–51, 53
direct memory access (DMA), for page-locked

memory, 186
DirectX

adding standard C to, 7
breakthrough in GPU technology, 5–6
GeForce 8800 GTX, 7
graphics interoperability, 160–161

discrete GPUs, 222–224
display accelerators, 2D, 4
DMA (direct memory access), for page-locked

memory, 186
dot product computation

optimized incorrectly, 87–90
shared memory and, 76–87
standard host memory version of, 215–217
using atomics to keep entirely on GPU, 250–251,

254–258
dot product computation, multiple GPUs

allocating portable pinned memory, 230–235
using, 224–229
zero-copy, 217–222
zero-copy performance, 223

Dr. Dobb's CUDA, 245–246
DRAMs, discrete GPUs with own dedicated, 222–223
draw_func, graphics interoperability, 144–146

E
end_thread(), multiple CPUs, 226
environmental science, CUDA applications for, 10–11
event timer. see timer, event
events

computing elapsed time between recorded. see
cudaEventElapsedTime()

creating. see cudaEventCreate()
GPU histogram computation, 173
measuring performance with, 95
measuring ray tracer performance, 110–114

overview of, 108–110
recording. see cudaEventRecord()
stopping and starting. see

cudaEventDestroy()
summary review, 114

EXIT_FAILURE(), passing parameters, 26

F
fAnim(), storing registered callbacks, 149
Fast Fourier Transform library, NVIDIA, 239
first program, writing, 22–24
flags, in graphics interoperability, 143
float_to_color() kernels, in graphics

 interoperability, 157
floating-point numbers

atomic arithmetic not supported for, 251
CUDA Architecture designed for, 7
early days of GPU computing not able to handle, 6

FORTRAN applications
CUBLAS compatibility with, 239–240
language wrapper for CUDA C, 246

forums, NVIDIA, 246
fractals. see Julia Set example
free(), C language
cudaFree()versus, 26–27
dot product computation with atomic locks, 258
GPU hash table implementation, 275
multiple CPUs, 227
standard host memory dot product, 217

G
GeForce 256, 5
GeForce 8800 GTX, 7
generate_frame(), GPU ripple, 70, 72–73, 154
generic classes, storing complex numbers with,

49–50
GL_PIXEL_UNPACK_BUFFER_ARB target, OpenGL

interoperation, 151
glBindBuffer()

creating pixel buffer object, 143
graphics interoperability, 146

glBufferData(), pixel buffer object, 143
glDrawPixels()

graphics interoperability, 146
overview of, 154–155

glGenBuffers(), pixel buffer object, 143
global memory atomics

GPU compute capability requirements, 167
histogram kernel using, 179–181
histogram kernel using shared and, 181–183

INDEX

285

__global__function
add function, 43
kernel call, 23–24
running kernel() in GPU Julia Set application,

51–52
GLUT (GL Utility Toolkit)

graphics interoperability setup, 144
initialization of, 150
initializing OpenGL driver by calling, 142

glutIdleFunc(), 149
glutInit(), 150
glutMainLoop(), 144
GPU Computing SDK download, 18, 240–241
GPu ripple

with graphics interoperability, 147–154
using threads, 69–74

GPU vector sums
application, 41–46
of arbitrarily long vectors, using threads, 65–69
of longer vector, using threads, 63–65
using threads, 61–63

gpu_anim.h, 152–154
GPUAnimBitmap structure

creating, 148–152
GPU ripple performing animation, 152–154
heat transfer with graphics interoperability,

156–160
GPUs (graphics processing units)

called "devices" in this book, 23
developing code in CUDA C with CUDA-enabled,

14–16
development of CUDA for, 6–8
discrete versus integrated, 222–223
early days of, 5–6
freeing memory. see cudaFree()
hash tables, 268–275
histogram computation on, 173–179
histogram kernel using global memory atomics,

179–181
histogram kernel using shared/global memory

atomics, 181–183
history of, 4–5
Julia Set example, 50–57
measuring performance with events, 108–110
ray tracing on, 98–104
work scheduling, 205–208

GPUs (graphics processing units), multiple,
213–236

overview of, 213–214
portable pinned memory, 230–235
summary review, 235–236
using, 224–229

zero-copy host memory, 214–222
zero-copy performance, 222–223

graphics accelerators, 3D graphics, 4–5
graphics interoperability, 139–161

DirectX, 160–161
generating image data with kernel, 139–142
GPU ripple with, 147–154
heat transfer with, 154–160
overview of, 139–140
passing image data to Open GL for rendering,

142–147
summary review, 161

graphics processing units. see GPUs (graphics
processing units)

grey(), GPU ripple, 74
grid

as collection of parallel blocks, 45
defined, 57
three-dimensional, 51

gridDim variable
2D texture memory, 132–133
defined, 57
dot product computation, 77–78
dot product computation with atomic locks,

255–256
GPU hash table implementation, 272
GPU Julia Set, 53
GPU ripple using threads, 72–73
GPU sums of arbitrarily long vectors, 66–67
graphics interoperability setup, 145
histogram kernel using global memory atomics,

179–180
histogram kernel using shared/global memory

atomics, 182–183
ray tracing on GPU, 102
shared memory bitmap, 91
temperature update computation, 119–120
zero-copy memory dot product, 222

H
half-warps, reading constant memory, 107
HANDLE_ERROR() macro

2D texture memory, 133–136
CUDA streams, 194–198, 201–204, 209–210
dot product computation, 82–83, 86–87
dot product computation with atomic locks,

256–258
GPU hash table implementation, 270
GPU histogram computation completion, 175
GPU lock function implementation, 253
GPU ripple using threads, 70
GPU sums of arbitrarily long vectors, 68

INDEX

286

HANDLE_ERROR() macro, continued
heat transfer simulation animation, 122–125
measuring ray tracer performance, 110–114
page-locked host memory application, 188–189
passing parameters, 26
paying attention to, 46
portable pinned memory, 231–235
ray tracing on GPU, 100–101
ray tracing with constant memory, 104–105
shared memory bitmap, 90–91
standard host memory dot product, 215–217
texture memory, 127, 129
zero-copy memory dot product, 217–222

hardware
decoupling parallelization from method of

executing, 66
performing atomic operations on memory, 167

hardware limitations
GPU sums of arbitrarily long vectors, 65–69
number of blocks in single launch, 46
number of threads per block in kernel launch, 63

hash function
CPU hash table implementation, 261–267
GPU hash table implementation, 268–275
overview of, 259–261

hash tables
concepts, 259–261
CPU, 261–267
GPU, 268–275
multithreaded, 267–268
performance, 276–277
summary review, 277

heat transfer simulation
2D texture memory, 131–137
animating, 121–125
computing temperature updates, 119–121
with graphics interoperability, 154–160
simple heating model, 117–118
using texture memory, 125–131

"Hello, World" example
kernel call, 23–24
passing parameters, 24–27
writing first program, 22–23

Highly Optimized Object-oriented Many-particle
Dynamics (HOOMD), 10–11

histogram computation
on CPUs, 171–173
on GPUs, 173–179
overview, 170

histogram kernel
using global memory atomics, 179–181
using shared/global memory atomics, 181–183

hit() method, ray tracing on GPU, 99, 102

HOOMD (Highly Optimized Object-oriented
Many-particle Dynamics), 10–11

hosts
allocating memory to. see malloc()
CPU vector sums, 39–41
CUDA C blurring device code and, 26
page-locked memory, 186–192
passing parameters, 25–27
use of term in this book, 23
zero-copy host memory, 214–222

I
idle_func() member, GPUAnimBitmap, 154
IEEE requirements, ALUs, 7
increment operator (x++), 168–170
initialization

CPU hash table implementation, 263, 266
CPU histogram computation, 171
GLUT, 142, 150, 173–174
GPUAnimBitmap, 149

inner products. see dot product computation
integrated GPUs, 222–224
interleaved operations, 169–170
interoperation. see graphics interoperability

J
julia() function, 48–49, 53
Julia Set example

CPU application of, 47–50
GPU application of, 50–57
overview of, 46–47

K
kernel

2D texture memory, 131–133
blockIdx.x variable, 44
call to, 23–24
defined, 23
GPU histogram computation, 176–178
GPU Julia Set, 49–52
GPU ripple performing animation, 154
GPU ripple using threads, 70–72
GPU sums of a longer vector, 63–65
graphics interoperability, 139–142, 144–146
"Hello, World" example of call to, 23–24
launching with number in angle brackets that is

not 1, 43–44
passing parameters to, 24–27
ray tracing on GPU, 102–104
texture memory, 127–131

key_func, graphics interoperability, 144–146

INDEX

287

keys
CPU hash table implementation, 261–267
GPU hash table implementation, 269–275
hash table concepts, 259–260

l
language wrappers, 246–247
LAPACK (Linear Algebra Package), 246
light effects, ray tracing concepts, 97
Linux, standard C compiler for, 19
Lock structure, 254–258, 268–275
locks, atomic, 251–254

M
Macintosh OS X, standard C compiler, 19
main()routine

2D texture memory, 133–136
CPU hash table implementation, 266–267
CPU histogram computation, 171
dot product computation, 81–84
dot product computation with atomic locks,

255–256
GPU hash table implementation, 273–275
GPU histogram computation, 173
GPU Julia Set, 47, 50–51
GPU ripple using threads, 69–70
GPU vector sums, 41–42
graphics interoperability, 144
page-locked host memory application, 190–192
ray tracing on GPU, 99–100
ray tracing with constant memory, 104–106
shared memory bitmap, 90
single CUDA streams, 193–194
zero-copy memory dot product, 220–222

malloc()
cudaHostAlloc() versus, 186
cudaHostAlloc()versus, 190
cudaMalloc()versus, 26
ray tracing on GPU, 100

mammograms, CUDA applications for medical
imaging, 9

maxThreadsPerBlock field, device properties, 63
media and communications processors (MCPs), 223
medical imaging, CUDA applications for, 8–9
memcpy(), C language, 27
memory

allocating device. see cudaMalloc()
constant. see constant memory
CUDA Architecture creating access to, 7
early days of GPU computing, 6
executing device code that uses allocated, 70
freeing. see cudaFree(); free(), C language

GPU histogram computation, 173–174
page-locked host (pinned), 186–192
querying devices, 27–33
shared. see shared memory
texture. see texture memory
use of term in this book, 23

Memory Checker, CUDA, 242
memset(), C language, 174
Microsoft Windows, Visual Studio C compiler, 18–19
Microsoft.NET, 247
multicore revolution, evolution of CPUs, 3
multiplication, in vector dot products, 76
multithreaded hash tables, 267–268
mutex, GPU lock function, 252–254

N
nForce media and communications processors

(MCPs), 222–223
nvIdIA

compute capability of various GPUs, 164–167
creating 3D graphics for consumers, 5
creating CUDA C for GPU, 7
creating first GPU built with CUDA Architecture, 7
CUBLAS library, 239–240
CUDA-enabled graphics processors, 14–16
CUDA-GDB debugging tool, 241–242
CUFFT library, 239
device driver, 16
GPU Computing SDK download, 18, 240–241
Parallel NSight debugging tool, 242
Performance Primitives, 241
products containing multiple GPUs, 224
Visual Profiler, 243–244

NVIDIA CUDA Programming Guide, 31

o
offset, 2D texture memory, 133
on-chip caching. see constant memory; texture

memory
one-dimensional blocks

GPU sums of a longer vector, 63
two-dimensional blocks versus, 44

online resources. see resources, online
OpenGL

creating GPUAnimBitmap, 148–152
in early days of GPU computing, 5–6
generating image data with kernel, 139–142
interoperation, 142–147
writing 3D graphics, 4

operations, atomic, 168–170
optimization, incorrect dot product, 87–90

INDEX

288

P
page-locked host memory

allocating as portable pinned memory, 230–235
overview of, 186–187
restricted use of, 187
single CUDA streams with, 195–197

parallel blocks
GPU Julia Set, 51
GPU vector sums, 45

parallel blocks, splitting into threads
GPU sums of arbitrarily long vectors, 65–69
GPU sums of longer vector, 63–65
GPU vector sums using threads, 61–63
overview of, 60
vector sums, 60–61

Parallel NSight debugging tool, 242
parallel processing

evolution of CPUs, 2–3
past perception of, 1

parallel programming, CUDA
CPU vector sums, 39–41
example, CPU Julia Set application, 47–50
example, GPU Julia Set application, 50–57
example, overview, 46–47
GPU vector sums, 41–46
overview of, 38
summary review, 56
summing vectors, 38–41

parameter passing, 24–27, 40, 72
PC gaming, 3D graphics for, 4–5
PCI Express slots, adding multiple GPUs to, 224
performance

constant memory and, 106–107
evolution of CPUs, 2–3
hash table, 276
launching kernel for GPU histogram computation,

176–177
measuring with events, 108–114
page-locked host memory and, 187
zero-copy memory and, 222–223

pinned memory
allocating as portable, 230–235
cudaHostAllocDefault()getting default, 214
as page-locked memory. see page-locked host

memory
pixel buffer objects (PBO), OpenGL, 142–143
pixel shaders, early days of GPU computing, 5–6
pixels, number of threads per block, 70–74
portable computing devices, 2
Programming Massively Parallel Processors: A

Hands-on Approach (Kirk, Hwu), 244

properties
cudaDeviceProp structure. see

 cudaDeviceProp structure
maxThreadsPerBlock field for device, 63
reporting device, 31
using device, 33–35

PyCUDA project, 246–247
Python language wrappers for CUDA C, 246

Q
querying, devices, 27–33

r
rasterization, 97
ray tracing

concepts behind, 96–98
with constant memory, 104–106
on GPU, 98–104
measuring performance, 110–114

read-modify-write operations
atomic operations as, 168–170, 251
using atomic locks, 251–254

read-only memory. see constant memory; texture
memory

reductions
dot products as, 83
overview of, 250
shared memory and synchronization for, 79–81

references, texture memory, 126–127, 131–137
registration
bufferObj with cudaGraphicsGLRegister-

Buffer(), 151
callback, 149

rendering, GPUs performing complex, 139
resource variable

creating GPUAnimBitmap, 148–152
graphics interoperation, 141

resources, online
CUDA code, 246–248
CUDA Toolkit, 16
CUDA University, 245
CUDPP, 246
CULAtools, 246
Dr. Dobb's CUDA, 246
GPU Computing SDK code samples, 18
language wrappers, 246–247
NVIDIA device driver, 16
NVIDIA forums, 246
standard C compiler for Mac OS X, 19
Visual Studio C compiler, 18

INDEX

289

resources, written
CUDA U, 245–246
forums, 246
programming massive parallel processors, 244–245

ripple, GPu
with graphics interoperability, 147–154
producing, 69–74

routine()
allocating portable pinned memory, 232–234
using multiple CPUs, 226–228

Russian nesting doll hierarchy, 164

S
scalable link interface (SLI), adding multiple GPUs

with, 224
scale factor, CPU Julia Set, 49
scientific computations, in early days, 6
screenshots

animated heat transfer simulation, 126
GPU Julia Set example, 57
GPU ripple example, 74
graphics interoperation example, 147
ray tracing example, 103–104
rendered with proper synchronization, 93
rendered without proper synchronization, 92

shading languages, 6
shared data buffers, kernel/OpenGL rendering

 interoperation, 142
shared memory

atomics, 167, 181–183
bitmap, 90–93
CUDA Architecture creating access to, 7
dot product, 76–87
dot product optimized incorrectly, 87–90
and synchronization, 75

Silicon Graphics, OpenGL library, 4
simulation

animation of, 121–125
challenges of physical, 117
computing temperature updates, 119–121
simple heating model, 117–118

SLI (scalable link interface), adding multiple GPUs
with, 224

spatial locality
designing texture caches for graphics with, 116
heat transfer simulation animation, 125–126

split parallel blocks. see parallel blocks, splitting
into threads

standard C compiler
compiling for minimum compute capability,

167–168

development environment, 18–19
kernel call, 23–24

start event, 108–110
start_thread(), multiple CPUs, 226–227
stop event, 108–110
streams

CUDA, overview of, 192
CUDA, using multiple, 198–205, 208–210
CUDA, using single, 192–198
GPU work scheduling and, 205–208
overview of, 185–186
page-locked host memory and, 186–192
summary review, 211

supercomputers, performance gains in, 3
surfactants, environmental devastation of, 10
synchronization

of events. see cudaEventSynchronize()
of streams, 197–198, 204
of threads, 219

synchronization, and shared memory
dot product, 76–87
dot product optimized incorrectly, 87–90
overview of, 75
shared memory bitmap, 90–93

__syncthreads()
dot product computation, 78–80, 85
shared memory bitmap using, 90–93
unintended consequences of, 87–90

t
task parallelism, CPU versus GPU applications, 185
TechniScan Medical Systems, CUDA applications, 9
temperatures

computing temperature updates, 119–121
heat transfer simulation, 117–118
heat transfer simulation animation, 121–125

Temple University research, CUDA applications,
10–11

tex1Dfetch() compiler intrinsic, texture memory,
127–128, 131–132

tex2D() compiler intrinsic, texture memory,
132–133

texture, early days of GPU computing, 5–6
texture memory

animation of simulation, 121–125
defined, 115
overview of, 115–117
simulating heat transfer, 117–121
summary review, 137
two-dimensional, 131–137
using, 125–131

INDEX

290

threadIdx variable
2D texture memory, 132–133
dot product computation, 76–77, 85
dot product computation with atomic locks,

255–256
GPU hash table implementation, 272
GPU Julia Set, 52
GPU ripple using threads, 72–73
GPU sums of a longer vector, 63–64
GPU sums of arbitrarily long vectors, 66–67
GPU vector sums using threads, 61
histogram kernel using global memory atomics,

179–180
histogram kernel using shared/global memory

atomics, 182–183
multiple CUDA streams, 200
ray tracing on GPU, 102
setting up graphics interoperability, 145
shared memory bitmap, 91
temperature update computation, 119–121
zero-copy memory dot product, 221

threads
coding with, 38–41
constant memory and, 106–107
GPU ripple using, 69–74
GPU sums of a longer vector, 63–65
GPU sums of arbitrarily long vectors, 65–69
GPU vector sums using, 61–63
hardware limit to number of, 63
histogram kernel using global memory atomics,

179–181
incorrect dot product optimization and divergence

of, 89
multiple CPUs, 225–229
overview of, 59–60
ray tracing on GPU and, 102–104
read-modify-write operations, 168–170
shared memory and. see shared memory
summary review, 94
synchronizing, 219

threadsPerBlock
allocating shared memory, 76–77
dot product computation, 79–87

three-dimensional blocks, GPU sums of a longer
vector, 63

three-dimensional graphics, history of GPUs, 4–5
three-dimensional scenes, ray tracing producing 2-D

image of, 97
tid variable
blockIdx.x variable assigning value of, 44
checking that it is less than N, 45–46
dot product computation, 77–78
parallelizing code on multiple CPUs, 40

time, GPU ripple using threads, 72–74
timer, event. see cudaEventElapsedTime()
Toolkit, CUDA, 16–18
two-dimensional blocks

arrangement of blocks and threads, 64
GPU Julia Set, 51
GPU ripple using threads, 70
gridDim variable as, 63
one-dimensional indexing versus, 44

two-dimensional display accelerators, development
of GPUs, 4

two-dimensional texture memory
defined, 116
heat transfer simulation, 117–118
overview of, 131–137

U
ultrasound imaging, CUDA applications for, 9
unified shader pipeline, CUDA Architecture, 7
university, CUDA, 245

v
values

CPU hash table implementation, 261–267
GPU hash table implementation, 269–275
hash table concepts, 259–260

vector dot products. see dot product computation
vector sums

CPU, 39–41
GPU, 41–46
GPU sums of arbitrarily long vectors, 65–69
GPU sums of longer vector, 63–65
GPU sums using threads, 61–63
overview of, 38–39, 60–61

verify_table(), GPU hash table, 270
Visual Profiler, NVIDIA, 243–244
Visual Studio C compiler, 18–19

W
warps, reading constant memory with, 106–107
while() loop

CPU vector sums, 40
GPU lock function, 253

work scheduling, GPU, 205–208

Z
zero-copy memory

allocating/using, 214–222
defined, 214
performance, 222–223

GPU GEMS: Programming Techniques,
Tips, and Tricks for Real-Time Graphics
Edited by Randima Fernando
ISBN-13: 978-0-321-22832-1

GPU GEMS 2: Programming Techniques
for High-Performance Graphics and
General-Purpose Computation
Edited by Matt Pharr
ISBN-13: 978-0-321-33559-3

GPU GEMS 3
Edited by Hubert Nguyen
ISBN-13: 978-0-321-51526-1

• Natural Effects
• Lighting and Shadows
• Materials
• Image Processing

• Performance and
Practicalities

• Beyond Triangles
• Geometry

Alias Systems
Apple
Brown University
Croteam
Cyan Worlds
discreet
Industrial Light & Magic
iXBT.com
Massachusetts Institute
 of Technology
Microsoft Research
Monolith Productions
New York University

NVIDIA
Piranha Bytes
Pixar Animation Studios
Siemens Medical Solutions
Softimage Co.
Softlab-NSK
Sony Pictures Imageworks
Stanford University
UC Davis
UNC-Chapel Hill
University of Utah
University of Waterloo

CONTRIBUTORS ARE FROM THE FOLLOWING
CORPORATIONS AND UNIVERSITIES:

GPU Gems, GPU Gems 2, and GPU Gems 3 are compilations of
contributed chapters covering practical real-time graphics
techniques arising from the research and practice of cutting-
edge developers. They focus on the programmable graphics
pipeline available in today’s GPUs and highlight quick-and-dirty
tricks used by leading developers, as well as fundamental,
performance-conscious techniques for creating advanced visual
effects. GPU Gems, GPU Gems 2, and GPU Gems 3 together
provide a comprehensive guide to taking advantage of the
power of the new generation of GPUs.

ALSO OF INTEREST

The Cg Tutorial
by Randima Fernando
and Mark J. Kilgard
ISBN-13: 978-0-321-19496-1

WINNER OF THE

2004 Front Line

Award for Best

Book from

Game Developer

Magazine

For additional information:
informit.com/aw • developer.nvidia.com

ALSO AVAILABLE: GPU GEMS

MAJOR TOPICS COVERED INCLUDE:

A

b
a
I

Sanders_BoBad.indd 1 5/11/10 12:01 PM

GPU GEMS: Programming Techniques,
Tips, and Tricks for Real-Time Graphics
Edited by Randima Fernando
ISBN-13: 978-0-321-22832-1

GPU GEMS 2: Programming Techniques
for High-Performance Graphics and
General-Purpose Computation
Edited by Matt Pharr
ISBN-13: 978-0-321-33559-3

GPU GEMS 3
Edited by Hubert Nguyen
ISBN-13: 978-0-321-51526-1

• Natural Effects
• Lighting and Shadows
• Materials
• Image Processing

• Performance and
Practicalities

• Beyond Triangles
• Geometry

Alias Systems
Apple
Brown University
Croteam
Cyan Worlds
discreet
Industrial Light & Magic
iXBT.com
Massachusetts Institute
 of Technology
Microsoft Research
Monolith Productions
New York University

NVIDIA
Piranha Bytes
Pixar Animation Studios
Siemens Medical Solutions
Softimage Co.
Softlab-NSK
Sony Pictures Imageworks
Stanford University
UC Davis
UNC-Chapel Hill
University of Utah
University of Waterloo

CONTRIBUTORS ARE FROM THE FOLLOWING
CORPORATIONS AND UNIVERSITIES:

GPU Gems, GPU Gems 2, and GPU Gems 3 are compilations of
contributed chapters covering practical real-time graphics
techniques arising from the research and practice of cutting-
edge developers. They focus on the programmable graphics
pipeline available in today’s GPUs and highlight quick-and-dirty
tricks used by leading developers, as well as fundamental,
performance-conscious techniques for creating advanced visual
effects. GPU Gems, GPU Gems 2, and GPU Gems 3 together
provide a comprehensive guide to taking advantage of the
power of the new generation of GPUs.

ALSO OF INTEREST

The Cg Tutorial
by Randima Fernando
and Mark J. Kilgard
ISBN-13: 978-0-321-19496-1

WINNER OF THE

2004 Front Line

Award for Best

Book from

Game Developer

Magazine

For additional information:
informit.com/aw • developer.nvidia.com

ALSO AVAILABLE: GPU GEMS

MAJOR TOPICS COVERED INCLUDE:

A

b
a
I

Your purchase of CUDA by Example includes access to a free online edition for 45 days
through the Safari Books Online subscription service. Nearly every Addison-Wesley
Professional book is available online through Safari Books Online, along with more than
5,000 other technical books and videos from publishers such as, Cisco Press, Exam
Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: YUYEREH.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Cover�
	Contents�
	Foreword�
	Preface�
	Acknowledgments�
	About the Authors�
	1 Why Cuda? Why Now?�
	1.1 Chapter Objectives�
	1.2 The Age of Parallel Processing�
	1.2.1 Central Processing Units�

	1.3 The Rise of Gpu Computing�
	1.3.1 A Brief History of Gpus�
	1.3.2 Early Gpu Computing�

	1.4 Cuda�
	1.4.1 What Is the Cuda Architecture?�
	1.4.2 Using the Cuda Architecture�

	1.5 Applications of Cuda�
	1.5.1 Medical Imaging�
	1.5.2 Computational Fluid Dynamics�
	1.5.3 Environmental Science�

	1.6 Chapter Review�

	2 Getting Started�
	2.1 Chapter Objectives�
	2.2 Development Environment�
	2.2.1 Cuda-Enabled Graphics Processors�
	2.2.2 Nvidia Device Driver�
	2.2.3 Cuda Development Toolkit�
	2.2.4 Standard C Compiler�

	2.3 Chapter Review�

	3 Introduction To Cuda C�
	3.1 Chapter Objectives�
	3.2 A First Program�
	3.2.1 Hello, World!�
	3.2.2 A Kernel Call�
	3.2.3 Passing Parameters�

	3.3 Querying Devices�
	3.4 Using Device Properties�
	3.5 Chapter Review�

	4 Parallel Programming In Cuda C�
	4.1 Chapter Objectives�
	4.2 Cuda Parallel Programming�
	4.2.1 Summing Vectors�
	4.2.2 A Fun Example�

	4.3 Chapter Review�

	5 Thread Cooperation
	5.1 Chapter Objectives�
	5.2 Splitting Parallel Blocks�
	5.2.1 Vector Sums: Redux�
	5.2.2 Gpu Ripple Using Threads�

	5.3 Shared Memory and Synchronization�
	5.3.1 Dot Product�
	5.3.1 Dot Product Optimized (Incorrectly)�
	5.3.2 Shared Memory Bitmap�

	5.4 Chapter Review�

	6 Constant Memory And Events�
	6.1 Chapter Objectives�
	6.2 Constant Memory�
	6.2.1 Ray Tracing Introduction�
	6.2.2 Ray Tracing on the Gpu�
	6.2.3 Ray Tracing With Constant Memory�
	6.2.4 Performance With Constant Memory�

	6.3 Measuring Performance With Events�
	6.3.1 Measuring Ray Tracer Performance�

	6.4 Chapter Review�

	7 Texture Memory�
	7.1 Chapter Objectives�
	7.2 Texture Memory Overview�
	7.3 Simulating Heat Transfer�
	7.3.1 Simple Heating Model�
	7.3.2 Computing Temperature Updates�
	7.3.3 Animating the Simulation�
	7.3.4 Using Texture Memory�
	7.3.5 Using Two-Dimensional Texture Memory�

	7.4 Chapter Review�

	8 Graphics Interoperability�
	8.1 Chapter Objectives�
	8.2 Graphics Interoperation�
	8.3 Gpu Ripple With Graphics Interoperability�
	8.3.1 the Gpuanimbitmap Structure�
	8.3.2 Gpu Ripple Redux�

	8.4 Heat Transfer With Graphics Interop�
	8.5 Directx Interoperability�
	8.6 Chapter Review�

	9 Atomics�
	9.1 Chapter Objectives�
	9.2 Compute Capability�
	9.2.1 the Compute Capability of Nvidia Gpus�
	9.2.2 Compiling for a Minimum Compute Capability�

	9.3 Atomic Operations Overview�
	9.4 Computing Histograms�
	9.4.1 Cpu Histogram Computation�
	9.4.2 Gpu Histogram Computation�

	9.5 Chapter Review�

	10 Streams�
	10.1 Chapter Objectives�
	10.2 Page-Locked Host Memory�
	10.3 Cuda Streams�
	10.4 Using a Single Cuda Stream�
	10.5 Using Multiple Cuda Streams�
	10.6 Gpu Work Scheduling�
	10.7 Using Multiple Cuda Streams Effectively�
	10.8 Chapter Review�

	11 Cuda C On Multiple Gpus�
	11.1 Chapter Objectives�
	11.2 Zero-Copy Host Memory�
	11.2.1 Zero-Copy Dot Product�
	11.2.2 Zero-Copy Performance�

	11.3 Using Multiple Gpus�
	11.4 Portable Pinned Memory�
	11.5 Chapter Review�

	12 The Final Countdown�
	12.1 Chapter Objectives�
	12.2 Cuda Tools�
	12.2.1 Cuda Toolkit�
	12.2.2 Cufft�
	12.2.3 Cublas�
	12.2.4 Nvidia Gpu Computing Sdk�
	12.2.5 Nvidia Performance Primitives�
	12.2.6 Debugging Cuda C�
	12.2.7 Cuda Visual Profiler�

	12.3 Written Resources�
	12.3.1 Programming Massively Parallel Processors: A Hands-on Approach�
	12.3.2 Cuda U�
	12.3.3 Nvidia Forums�

	12.4 Code Resources�
	12.4.1 Cuda Data Parallel Primitives Library�
	12.4.2 Culatools�
	12.4.3 Language Wrappers�

	12.5 Chapter Review�

	A: Advanced Atomics�
	A.1 Dot Product Revisited�
	A.1.1 Atomic Locks�
	A.1.2 Dot Product Redux: Atomic Locks�

	A.2 Implementing a Hash Table�
	A.2.1 Hash Table Overview�
	A.2.2 A Cpu Hash Table�
	A.2.3 Multithreaded Hash Table�
	A.2.4 A Gpu Hash Table�
	A.2.5 Hash Table Performance�

	A.3 Appendix Review�

	Index�
	A�
	B�
	C�
	D�
	E�
	F�
	G�
	H�
	I�
	J�
	K�
	L�
	M�
	N�
	O�
	P�
	Q�
	R�
	S�
	T�
	U�
	V�
	W�
	Z�

